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Chapter 1

Overview

1.1 Abstract

There is more to learning stochastic concepts for robust statistical pattern recognition than the learning

itself: computational resources must be allocated and information must be obtained. Therein lies the key

to a learning strategy that is efficient, requiring the fewest resources and the least information necessary to

produce classifiers that generalize well. Probabilistic learning strategies currently used with connectionist

(as well as most traditional) classifiers are often inefficient, requiring high classifier complexity and large

training sample sizes to ensure good generalization. An asymptotically efficient differential learning strategy

is set forth. It guarantees the best generalization allowed by the choice of classifier paradigm as long as the

training sample size is large; this guarantee also holds for small training sample sizes when the classifier is

an "improper parametric model"' of the data (as it often is). Differential learning requires the classifier with

the minimum functional complexity necessary - under a broad range of accepted complexity measures

for Bayesian (i.e., minimum probability-of-error) discrimination.

The theory is demonstrated in several real-world machine learning/pattern recognition tasks associated

with optical character recognition, medical diagnosis, and airborne remote sensing imagery interpretation.

These applications focus on the implementation of differential learning and illustrate its advantages

and limitations in a series of experiments that complement the theory. The experiments demonstrate

that differentially-generated classifiers consistently generalize better than their probabilistically-generated

counterparts across a wide range of real-world learning-and-classification tasks. The discrimination

improvements range from moderate to significant, depending on the statistical nature of the learning task and

its relationship to the functional basis of the classifier used.

'See definition 3.14.
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1.2 Intended Audience

The material in this text is intended for researchers in the areas of statistical pattern recognition and machine

learning. At the very least this includes researchers from the fields of statistics, electrical and computer

engineering, and computer science. Within each of these broad fields there are disciplines that have generated

their own culture and technical jargon: the terminology of one culture does not always match that of another,

so there are inherent problems associated with any attempt to reach a wide audience with a single message.

Nevertheless, we shall try.

To this end we combine elements and notation of estimation theory, statistical pattern recognition, 0
information theory, and computational learning theory; we exploit the more expressive aspects of each

discipline in order to articulate our message clearly. We therefore employ a mixture of the notational

conventions of i15, 45, 29, 117, 1001, among others; appendix A provides a glossary of notation.

Although we have endeavored to make the material accessible to a broad audience, the text assumes

that the reader has a basic understanding of probability and statistics and a familiarity with the terminology

commonly used in the pattern recognition literature (e.g., [29]). This terminology is sometimes at odds with

that of other disciplines. The most notable example is the word class: in real analysis, measure theory, and

computational learning theory, the term is synonymous with "set"; in the pattern recognition literature, the

term is synonymous with "concept". We generally mean "concept" (not "set") when we ,ise the term

class. At the same time, we use the term hypothesis class - computational learning theory jargon -

when referring to the set of all possible classifiers that might be generated by a learning strategy. Computer

scientists will note that we use the term "search" to denote "numerical optimization procedure". Strictly

speaking, a numerical optimization procedure is a specific type of search (i.e., one that takes place over a

continuous, differentiable function on an uncountable space of independent variables); thus, our terminology

is somewhat imprecise. We have kept these kinds of inconsistencies to a minimum, committing them only

when we feel economy of words and/or the historical precedence of a particular research field warrants.

1.3 Outline of the Text

Up through the first half of this century, statistical pattern recognition was generally done with so-called
"parametric" models. "[he parametric model assumes that the feature vector (or attribute vector) has a

particular probabilistic form, so the process of learning is simply one of choosing the set of parameters that

maximizes the likelihood that the observed data could have been generated by the model; logistic regression

is arguably the best-known example. Parametric models are generally simple paradigms that lend themselves

to detailed analysis. Their simplicity is appealing in terms of the analytical tractability it affords, but it

enforces a restrictive probabilistic view of the world that is not always valid.

The computer age has brought us the power to explore less restrictive "non-parametric" models, which
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make no explicit assumptions regarding the underlying probabilistic nature of the world. Parzcn windows,

decision trees, and neural network classifiers are three popular examples of non-parametric models. The

adjective "non-parametric" is ironic (and in our opinion unfortunate) because it falsely implies that such

models have no parameters. Of course all models have parameters to the extent that they encode a definition

of the classifier in some tangible form. This leads us to view all models as parametric and, furthermore,

to make a clear distinction between proper and improper parametric models.2 A proper parametric model

has a specific probabilistic form; when parameterized correctly, it is an exact expres;,'n of the feature

vector's probabilistic nature. An improper parametric model is not a valid expression of the feature vector's

probabilistic nature, whether or not such an expression exists.

This text is motivated by three convictions. The first is that it is not necessary to estimate probabilities

in order to perform robust statistical pattern recognition. The second conviction is that many real-world

pattern recognition tasks do not have a proper parametric model; among those that do, the proper parametric

model may not be readily discernible. The third conviction is expressed in Occam's razor, the celebrated

folk theorem-' that asserts, "the simplest model of the data is the best one." Ultimately then, the task of

learning to perform robust statistical pattern recognition becomes a process of making the most of the least:

we strive to generate the best classifier we can from the simplest model that will do. Differential learning is

a theoretically defensible means of achieving this goal consistently - an assertion we support with proofs

and illustrative experiments.

1.3.1 Summary of Findings

All of our findings follow from two premises:

Probabilistic versus discriminative learning - There are at least two approaches to learning stochastic

concepts for statistical pattern recognition: probabilistic and discriminative. Probabilistic learning strategies

seek to learn the a posteriori class probabilities of the feature vector over its domain, whereas discriminative

learning strategies seek only to learn the identity of the most likely class at each point on the feature

vector's domain (equivalently, discriminative learning strategies seek only to learn the Bayes-optimal class

boundaries on the feature vector's domain). Both of these strategies can be employed with differentiable

supervisedclassefters, which form their input-to-output mappings by adjusting a set of internal parameters via

an iterative search aimed at optimizing a differentiable objective function (or empirical risk measure). The

objective function is a meiric that evaluates how well the classifier's evolving mapping reflects the empirical

relationship between the input patterns of the training sample and their class membership, modeled by the

classifier's discriminant functions. Error measure objective functions and the classification figure-of-merit

211v term "proper model" probably originates with Dawes 1261: see section 3.6.2.
3 Occam's razor is formalized in the notion of universal probability (e.g., [2 1, pg. 1601) and in VC theory [ 137, 136].
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(CFM objective function) [55] - both described in chapter 2 - induce different kinds of learning. Error

measures induce probabilistic learning, whereas the CFM objective function induces differential learning, a

form of discriminative learning appropriate for the differentiable supervised classifier.

The efficient classifier and efficient learning - We provide rigorous estimation-theoretic definitions

of the efficient classifier. in simple terms, it consistently exhibits the lowest error rate possible for a

given learning/classification task; no other classifier generalizes better. The relatively efficient classifier is

analogous to the efficient classifier with one qualification: the relatively efficient classifier generalizes better

than any other classifier drawn from a limited set of possibilities. We refer to this limited set of possibilities

as the classifier's hypc:hesis class (e.g., [1001). The differentiable supervised classifier can be viewed as a

Bayesian learning paradigm because its discriminator's initial (or prior) parameterization is transformed to

a posterior parameterization during learning. Given a particular training sample size, a particular choice of

discriminant functions (i.e., hypothesis class), and a particular initial parameterization, the transformation S
depends entirely on the learning strategy employed. An efficient learning strategy generates the relatively

efficient classifier described above for both small and large training sample sizes. An asymptotically efficient

learning strategy requires large training sample sizes to guarantee the relatively efficient classifier.

Principal Theoretical Findings

We prove the following:

" Classifiers that learn by minimizing error measure objective functions (e.g., mean-squared error,

the Kullback-Leibler information distance - a.k.a. "cross entropy" -1[82, 811, etc.) learn =

probabilistically. Again, the classifier that learns probabilistically attempts to learn the a posteriori

probabilities of the feature vector over its domain.

"* Learning probabilistically by minimizing error measure objective functions rarely generates the

relatively efficient classifier. As a result, probabilistic learning is usually inefficient.

"* Classifiers that learn by maximizing the CFM objective function learn differentially. Again, the

classifier that learns differentially attempts to learn only the most likely class of the feature vector over

its domain.

"* Learning differentially by maximizing the synthetic CFM objective function described herein always

generates the relatively efficient classifier for large training sample sizes. As a result, differential

learning is asymptotically efficient.

" Learning differentially by maximizing the synthetic CFM objective function usually generates the

relatively efficient classifier for small training sample sizes as well. As a result, differential learning is

usually efficient.
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e Learning differentially via the CFM objective function requires discriminant functions with the least

functional complexity (e.g., the fewest parameters) necessary for Bayesian (i.e., minimum probability-

of-error) discrimination.

o Information-theoretic analysis proves that the training sample sizes necessary to guarantee a specified

level of generalization via differential learning are typically orders of magnitude smaller than those

necessary to estimate probabilities with a specified level of precision. This indicates that current

probabilistic extensions of the PAC learning paradigm 11331 to stochastic concepts on uncountable

feature vector domains (e.g., [59, 60, 1461) are likely to over-estimate the training sample sizes

necessary for good generalization when the learning objective is merely pattern classification.

Experimental Findings

* We apply differential learning to several real-world machine learning/pattern recognition tasks associated with

optical character recognition, medical diagnosis, and airborne remote sensing imagery interpretation. In each

task the differentially generated classifier generalizes better than its probabilistically generated counterpart.

The discrimination improvements range from moderate to significant, depending on the statistical nature of

* the learning task and its relationship to the functional basis of the classifier used. In general, differential

learning exhibits the following characteristics:

"* Differential learning allows classifiers with 1/2 - 1/10 the number of parameters used in the best

independently-developed models for each task.

"* The error rates of differentially-generated classifiers are 20% - 50% less than those of the best

independently-developed models.

* * The error rates of differentially-generated classifiers are 30% - 80% less than those of probabilistically-

generated control models.

"* Differentially-generated classifiers are between two and ten time.. more efficient than their

probabilistically-generated counterparts.

1.3.2 Profile of the Chapters

The preceding findings are organized in three basic parts: theoretical findings are described in part I;

* experimental findings are described in part II; supporting material is detailed in the appendices. We profile

the contents of parts I and II in the following sections.

0
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Part I: Theory

Chapter 2: We define the differentiable supervised classifier in terms of its discriminator, the set of

discriminant functions that map the feature vector to a set of possible classifications. We discuss the

Bayes-optimal classifier: we refer to its discriminator as the Bayesian discriminant function (BDF). We •

show that the BDF has two fundamental forms that correspond to two fundamental approaches to learning:

probabilistic learning seeks to learn the a posteriori class probabilities of the feature vector over its domain;

differential learning merely seeks to learn the identity of the most likely class over the feature vector's domain.

We prove that both strategies generate the Bayes-optimal classifier, given a sufficiently large training sample 0
size and a classifier with sufficient functional complexity to learn the appropriate form of the BDF.4

Chapter 3: We characterize the classifier as an estimator of the Bayes-optimal classifier. We define the

efficient classifier in terms of three metrics, discriminant bias, discriminant variance, and mean-squared

discriminant error (MSDE). These metrics are shown to be quite different from the functional bias, variance,

and mean-squared error metrics that are commonly discussed in the literature. The efficient classifier

generalizes better than any other classifier, exhibiting the lowest possible MSDE for a given training sample

size. The relatively efficient classifier is analogous, with one caveat: the relatively efficient classifier

generalizes better than any other classifier drawn from a limited set of possibilities (i.e., the hypothesis

class). The relatively efficient classifier is identically the efficient classifier if the latter is contained in

the hypothesis class; otherwise, the relatively efficient classifier is the best approximation to the efficient

classifier allowed by the hypothesis class. An efficient learning strategy always generates the relatively

efficient classifier, regardless of the training sample size. An asymptotically efficient learning strategy always

generates the relatively efficient classifier, but requires large training sample sizes to do so. We prove that

differential learning is asymptotically efficient and that probabilistic learning is inefficient. We then prove

that differential learning generates the Bayes-optimal classifier from the hypothesis class with the minimum

functional complexity necessary for the task. Probabilistic learning generally requires a hypothesis class with 0
greater functional complexity to generate the Bayes-optimal classifier. We conclude the chapter by outlining

the special conditions under which probabilistic learning is more efficient than differential learning. These

conditions can exist only if the hypothesis class constitutes a proper parametric model of the feature vector.

Chapter 4: We illustrate the proofs of chapter 3 with two simple learning/classification tasks that lend

themselves to closed-form analysis. The first illustration involves a proper parametric model; it shows

the special circumstances under which probabilistic learning generates a more efficient classifier than

differential learning does when the training sample size is small. The second illustration shows the typical

learning/classification scenario wherein the hypothesis class constitutes an improper parametric model. In
4 We address the issue of classifier complexity in chapter 3.
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this circumstance, differential learning generates the relatively efficient classifier for both small and large

training sample sizes, whereas probabilistic learning generally fails to do so for any training sample size.

Chapter 5: We discuss the CFM objective function in terms of its monotonicity and the convergence

properties it engenders in the differential learning strategy. Monotonicity proves to be an essential

characteristic of any objective function associated with an efficient learning strategy. In describing this

property we invoke a differential view of the discriminator's output state (i.e., the state of the classifier's

discriminant functions), which we employ frequently in the experiments of part II. The view is a 2-dimensional

representation that is consistent with the differential form of the BDF described in chapter 2. It leads to a

simple taxonomy of training examples and an equally simple geometric explanation of the difference between

differential and probabilistic learning strategies. We conclude the chapter by proving that differential learning

via the synthetic CFM objective function is reasonably fast. That is, the search for parameters that maximize

the synthetic CFM objective function converges in reasonable time.

Chapter 6: We make a clear distinction between the probabilistic information content and the discriminant

information content of a randomly-selected training sample. We show that a simple unfair (or "rigged")

game of dice forms the basis of all learning/statistical pattern recognition tasks. We analyze this game in order

to prove that a random sample's discriminant information content is always at least as great as its probabilistic

information content. The information-theoretic argument relies on Rissanen's notion of stochastic complexity

(e.g., [ I15]) and can be viewed as an extension of the chapter 3 proof that differential learning requires the least

functional complexity necessary to learn the Bayes-optimal classifier. We derive tight distribution-dependent

bounds on the training sample size and (information-theoretic) functional complexity requirements of the

differential and probabilistic learning strategies. We show that the rigged game of dice extends naturally

to pattern recognition tasks for which the feature vector exists on a finite countable domain. A further

extension of the paradigm brings us to the general case in which the feature vector exists on a potentially

infinite uncountable domain. We conclude by discussing the limitations of the rigged-die paradigm when it

is generalized to the uncountable feature vector space.

Part H: Applications

Chapter 7: We discuss the pragmatic issues that must be addressed in order to implement differential

learning successfully. We do this with the aid of the celebrated Iris data, collected by E. Anderson [3]

and subsequently used by R. A. Fisher in his seminal paper on linear discriminants [34]. Differential

learning allows a natural partitioning of the training sample into three sub-sets: un-learned examples, learned

examples, and transition examples. The first two categories are self-explanatory; the third category comprises

those examples that are neither un-learned nor learned, but are "in between" ttlose two states. We descrihe
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the nature of confidence as it pertains to differential learning. We show that the differential paradigm

focuses on un-learned examples without dwelling on learned examples. We contrast differential learning

with two forms of probabilistic learning associated with the mean-squared error (MSE) objective function

and the Kullback-Leibler information distance [82, 811. We view the impact of differential learning on the

classifier's ability to detect and reject specious classifications. We conclude by demonstrating the efficiency

of differential learning by learning/classifying the Iris with three substantially different hypothesis classes:

the differentially-generated clas-,tiers consistently generalize better than their probabilistic counterparts, as

predicted by the ;toofs of part 1.

Chapter 8: We expand upon the findings of chapter 7 with an optical character recognition (OCR) task

involving the AT&T DB I handwritten digit database. The database has been studied extensively by other

researchers, so it provides a good benchmark for evaluating differential learning. We begin with a description

of the controlled experimental protocols we use throughout the text when comparing differential learning

with probabilistic learning. We show that classifier's generated differentially fiom three substantially

different hypothesis classes generalize better than their probabilistically-generated counterparts; the disparity

increases significantly when the OCR images are compressed in order to reduce the classifiers' complexities.

The differentially-generated classifiers' error rates are typically 2% to 4%; their probabilistically-generated

counterparts' error rates range from 3% to 12%. By adding noise to the OCR images prior to compression, we

induce conditions under which one particular choice of hypothesis class approximates the proper parametric

model of the noisy digits. As predicted by chapter 3, the classifier generated probabilistically from this proper

parametric model generalizes better than its differentially-generated counterpart for small training samples

of very noisy digits.

Chapter 9: We repeat the experiments of Manduca, Christy, and Ehman [90] in which avascular necrosis

(AVN) of the femoral head (a debilitating hip joint disorder) is diagnosed from magnetic resonance images

(MRIs) using neural network classifiers. We compare the diagnostic accuracy of a simple differentially-

generated classifier and two probabilistically-generated controls (including the logistic regression model)

with their original results. When presented with approximately sixty training images and subsequently

evaluated on the same number of test images, the differentially-generated classifier discriminates between

healthy and AVN compromised femoral heads with a 5.9% error rate. This error rate is slightly lower than the

7.5% error rate of humans without formal training in radiology, reported in [901. The differentially-generated

logistic linear classifier generalizes better than the probabilistic controls and the best previous neural network

classifier, a multi-layer perceptron having approximately 24 times the number of parameters (6,164, versus

257 for our classifier) [901.
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Chapter 10: We describe a series of remote sensing experiments conducted in collaboration with the

Digital Mapping Laboratory, School of Computer Science, Carnegie Mellon University. We use a modified

RBF classifier employing differential learning (DRBF) to interpret multi-spectral imagery from the Daedalus

airborne remote sensing system. The interpretation procedure involves classifying individual image pixels,

which represent 64 square meters of earth surface material, into eleven categories of natural and man-made

materials - a preliminary step in automated map generation and various environmental analysis tasks.

The DRBF classifier has 132 parameters and exhibits a 29% error rate on the interpretation task. The

maximum-likelihood (probabilistic) model currently used for this task has 847 parameters and exhibits a 46%

error rate.

Chapter 11: We state our contributions to the fields of machine learning and statistical pattern recognition.

We then discuss the philosophical implications of our research. We conclude with an outline of future

research that follows naturally from what we have accomplished to date.

Appendices

Most of the appendices are explanations of issues that are not essential to the main text, but a few appendices

contain essential material worth mentioning here. Appendix A provides a glossary of notation used throughout

the text. Terminology is explained throughout the text. The reader can find references to terms via the

index; boldface page numbers indicate the page on which a term is defined or explained most thoroughly.

Appendix D provides details of the synthetic CFM objective function, including ANSI C source code for

the function and its first two derivatives. This appendix also contains a tutorial explanation of how the

backpropagation algorithm [ I ! 9, 120] can be modified for use with CFM. Appendix E explores the similarities

and differences between differential learning via the CFM objective function and learning via Rosenblatt's

perceptron criterion function [1 16). The reader familiar with learning via the perceptron criterion function

might find this material a helpful introduction to differential learning via the CFM objective function since

the latter can be viewed as a generalization of the former.
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Chapter 2

Probabilistic and Differential Strategies
* for Learning the Bayesian Discriminant

Function'

Outline

We describe two learning strategies by which a broad category of pattern classifiers (including, but not

limited to, multi-layer perceptron and radial basis function neural networks) can learn to perform Bayesian

discrimination (i.e., minimum-error statistical pattern recognition). The probabilistic learning strategy is

associated with error measure objective functions such as mean squared error and the Kullback-Leibler

information distance; it engenders Bayesian discrimination by estimating probabilities. The differential

learning strategy is associated with classification figure-of-merit objective functions [55]; because it is a

discriminative strategy, it engenders Bayesian discrimination without estimating probabilities directly. We

describe each strategy in detail as a preliminary step in proving that differential learning is efficient, whereas

probabilistic learning is not.

2.1 Introduction

This chapter describes two supervised strategies for learning stochastic concepts in order to perform statistical

pattern recognition. Each of these strategies can be applied to any computational model (hereafter called the

classifier) that forms an input-to-output mapping by adjusting a set of internal parameters via an iterative

search aimed at optimizing an objective function (or empirical risk measure). The objective function is a

metric that evaluates how well the classifier's evolving mapping reflects the empirical relationship between

the input patterns of the training sample and their class membership, modeled by the classifier's outputs.

Optimizing the objective function via iterative search on the classifier's parameter space is therefore a

This chapter is a revised and extended version of work first published in [54).

13
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mathematically defensible approach to machine learning.

Our principal objective in this chapter is to describe the specific nature of two supervised learning strategies

-probabilistic learning and differential learzing - that lead to minimum-error Bayesian discrimination

when applied to classifiers of the form described above. Because many neural networks learn in a supervised

fashion, it is our hope that the following proofs will be of general interest to the connectionist community. •

Our presentation begins with an overview of Bayesian discrimination, which provides the framework upon

which the main proofs are built. Our secondary objective is to show that these proofs apply to a broad

spectrum of machine learning paradigms - not all of which are typically associated with statistical pattern

recognition. We do this by introducing them within an historical context that views connectionist models as

natural extensions of more traditional classifier paradigms.

In this chapter and all that follow, we combine the elements and notation of statistical pattern recognition

and computational learning theory in order to exploit the more expressive aspects of each discipline and

present a succinct set of proofs. We employ a mixture of the notational conventions of [45, 29, 117, 1001:

appendix A provides a glossary of notation.

We define and contrast probabilistic and differential learning in terms of the functional forms of the

Bayesian discriminant function (e.g., [29, sec. 2.5]) they generate. Simply stated, probabilistic learning

yields classifiers that estimate the class probabilities for a given input pattern, whereas differential learning

yields classifiers that merely identify the most likely class for a given input pattern. Each learning strategy

is associated with a family of objective functions. Proofs of varying generality and rigor linking specific

objective functions to what we call probabilistic learning are not new. Many authors have shown this linkage

for the mean-squared-error (MSE) objective function2 [ 103, 29, 7, 142, 86, 42, 118, 17, 138, 125, 701, while

others have shown it for the Kullback-Leibler information distance (a.k.a. "cross entropy": CE) and/or

closely related error measures [82, 81, 67, II, 127, 142, 64, 42, 31]. Simulations demonstrating the validity

of those proofs for neural network classifiers can be found in [II I]. We prove that both of these objective

functions belong to a broad family of error (or distance) measures that engender probabilistic learning. We

then prove that classification figure-of-merit (CFM) objective functions [551 engender differential learning. 0

2.2 Bayesian Discrimination

Consider a random vector (RV) X, which exists on the domain of real-valued N-dimensional vectors:

X E = X . X is the feature vector (or attribute vector), which can represent any one of C classes (or

concepts) 3 on feature vector space X. Feature vector space X is paired with a class label (or classification)

space W1 = {Wi, ... ,Wc}. We denote the ith class of X by Wi. The feature vector X is always
2 Th1 MSE objective function is also called the least-mean-squared (LMS) and the least-squared error (LSE) objective function.
3Tkhis unco.ntably infinite definition of feature vector space includes more restictive definitions, such as the set of all integer-valued

N-dimensional vectors ZN and the set of all N-tuples (0. 1 }*. The following proofs therefore apply to more restrictive definitions of
the feature vector, involving finite and/or countable spaces, without loss of generality.
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.0 p(.t IW) P(O)

-2.7 0 2.7 X -2.7 0 2.7 X

p(S x w) P(*wO .(.0: S

-2.7 0 2.7 X .2.7 0 2.7 X

Figure 2. 1: Left: The class-conditional density - class prior probability products Pxlw(x I w~) PW(w3i)
for a three-class random scalar x. Right: The associated a posteriori probabilities Pwix(Wi Ix) for each of
the three-classes, plotted over the effective domain of x. These constitute the strictly probabilistic form of
the Bayesian discriminant function for x (see definition 2.3).

paired with a class label W E it; we denote the pairing by (X, W). Because the classes defined on

are stochastic, W for a given X is not deterministic; rather it is a random variable, examples of which

are generated according to the conditional distribution PwIx(W I X) over 12. Thus, the probability that an

example of X constitutes an example of the ith class Wi is P,,Vlx(Wi I X). We refer to Pwlx(Wi I X) as

the, "a posteriori probability of the ith class (given X)."

There exists some means of obtaining examples of X, which are generated according to the probability

density function (pdf) px(X) over X. Examples of X representing the ith class are generated according

to the class-conditional pdf pxII,(X I Wi) over X such that

c

p ,x(X) = Pxlw(xluI) • Pw(wj) (2.1)
j=I

The "prior" distribution of classes on i2, denoted by Pw(W) in (2. 1), is obtained by integrating the joint

pdf px,w(X, W), which is over the joint space X x 12, over X:

Pw(W) = fx pxw(XwW) dX (2.2)

By Bayes' rule, the a posteriori probability of the ith class is

PwIx(W iIX) = PXW(Xwi)
Px(X)
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= Px 1)w(X VWi) P1 v(03i) (2.3)

)'=I pXI(X I1 W) • Pw(Wj)

Example 2.1 Figure 2.1 provides a concrete example of a simple three-class pattern recognition task

described by the mathematical formalism above. In this figure the feature vector is actually a scalar, so

feature vector space is the real number line: x E X = R.. This random variable can represent one of

three classes on classification space: W E f2 = {031, W2, W3 }. The left-hand side of the figure shows the

class-conditional pdfrs of x multiplied by the class prior probabilities (pXl)v(x I Wj) " Pw(Wi) ; i = 1, 2, 3)

in order of increasing class index, from bottom left to top right. The right-hand side of the figure shows the

corresponding a posteriori class probabilities ( Pw (Wi I x) ; i = 1, 2, 3 ) over the effective domain of x.

The bar-graph display at the bottom of the left and right figures is described in example 2.3.

2.2.1 The Classifier and the Bayesian Discriminant Function

Pattern recognition, discrimination, or classification is the process by which the classifier associates a class

(or concept) label with each example of the feature vector presented to it. For this reason, the classifier

implements a set of C deterministic functional mappings (known as the discriminantfunctions) from feature

vector space X to discriminator output space ' Y. This set of discriminant functions ( (X 10) is known

collectively as the discriminator. The discriminator output Y = (vi, ... yc) exists on the domain of

real-valued C-dimensional vectors 5 (Y E Y = R ) such that

•:X --+ Y;

(2.4)
Q(XIO) {,(XIO).....gC(X1O)},

where

gi: X -+ yi (y, E R-) Vi (2.5)

The argument 9 in 9(X 149) and gi(X 19) indicates that the discriminant functional mappings depend on

the parameterization 9 of the discriminator.

41U followin defniion of a claifier and oIt asociad funtial mappinp asumes a one-to-onesponden betweete
number of discriminstto outputs and the number of classes C. The proofs that follow rely on this conventional (rather thain necessary)
munytion. Other musntions are equally valid. As an exmple, a classifier with flog2 lcfl discri ntato can ecogmi-e C

l . In such a cut the following proofs will hold, given appropria• modifications to account for the altered discriminator oupm
Space Y.

5 As with feature vector space, this uncountably infinite definition of discriminrator output sace includes mote restrictive definitions
involving counble andlor fini spe s. Examples of such spaces are the finite uncountable space Y = 10, c i iwith
multi-layer ------rm- having outpu nodes with logistic (i.e., differntiable sigmoidal) mm-lineanties, and the finite countable space
y= {0, assiociated with decision trees.
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Discriminator

X g 1 ) 2 r~y) = coi ;Yi = m~ax yj - D(X 10)

gC(x 10 ) Y

Figure 2.2: A diagrammatic view of the classifier and its associated functional mappings. The classifier
input is a feature vector X; the C discriminator outputs yl, .... yc correspond to the classes that X can
represent; the class label V (X 10) assigned to the input feature vector corresponds to the discriminator's
largest output. Figure based on figure 2.3 of Duda & Hart 1291.

The final classification V (X 19) of X is obtained by a mapping F from discriminator output space

Y to classification space It. This mapping associates X with the class label corresponding to the

discriminator's largest output.6 If two or more discriminator outputs are equal and larger than the rest, the

mapping yields a set of possible classifications, corresponding to all of the top outputs:

F: Y -+ W

Wi : Y' = maxj .i, Yk < y, V k i i
F(Y) = (2.6)

{W 1i : Y, = maxj y,}, otherwise

s.t. *D(XIe) = F(Y) = r(g(XI1)) : V(X1e) E S = {W, ... W ,e} (2.7)

In the words of Duda and Hart [29, sec. 2.5.1], "the classifier is viewed as a machine that computes C

discriminant functions and selects the [class] corresponding to the largest discriminant." Figure 2.2 is based

on figure 2.3 of [29], and illustrates this mathematical notion of the classifier.

Definition 2.1 Tie (mnhimum-error) Bayes-optimal classifier: It is straightforward to prove that the

classfier D(X) that minimizes the probability of an incorrect classification of X is the one that always

maps the feature vector to its most probable class (e.g., [29, pp. 16-20)):

* 'Te followb l prfoos an necessarily finked with this method of choosing the class label for an example. For classifiers that do not
have a one-o-one correspiondence between their number of discriminator outputs and the number of classes, the discriminator output
state representing the clmification of the example must be maximal by a measure that is appropriate for the discriminator.
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T)(X),,Y, ýý w. : PWIl(W.IX) _Ž PwIl(Wk IX) VWk 5 w. (2.8)

Any classifier satisfying (2.8) is known as a Bayes-optimal classifier, which is said to yield (minimum-error)

Bayesian discrimination.

Remark: Equation (2.8) describes a unique mapping from X to W. However, given our definition

of the classifier in (2.6) - (2.7), there are infinitely many discriminators g(X IV) that implement the

Bayes-optimal classifier. Indeed, as long as the discriminant function g.(X [6) associated with the largest

a poste.•ori class probability Pwlx(W. I X) in (2.8) is always largest, the classifier yields Bayesian

discrimination.

Definition 2.2 The Bayesian discriminant function (BDF): In mathematically formal terms, the

discriminator Q(X 10) constitutes the Bayesian discriminant function -and the classifier D) (X 10)

yields Bayesian discrimination - if the classifier's largest output always corresponds to the most likely

class, given X:

V (xIe) = r(Y) = r(g(xIe)) = P(x)a,- if/

gi(XM) =y;

y, > Y1: PW-1.(WIX) > Pwix(Wj IX) , PwI.(Pi IX) = max Pw,,(CWk X)J (2.9)

yi = yj: Pwi.(WiX) = PwiM(W IX) A I

Yi < maxy), Pwl,(W iIX) < max Pwl1 (Wj X)

Vi, VX E X

Remark: The BDF is of course a set of functions rather than a single function, as the name suggests. Because

there are infinitely many discriminators that satisfy (2.9), them are infinitely many discriminant functions

that implement the Bayes-optimal classifier of definition 2. 1.

2.2.2 Probabilistic and Differential forms of the Bayesian Discriminant Function

We group all Bayesian discriminant functions into four categories. Note that the following definitions

consider all possible forms of the BDF - not just those allowed by our choice of discriminator 1(X 10)

(we discuss the difference at length in chapter 3). We denote the arbitrary BDF by Yý(X)B.,m and the set of

all such BDFs by Fgm..
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Definition 2.3 The strictly probabilistic form of the BDF: Thisform of the BDF is given by

Y(X)Ba.es.,.SgicgI.proiii,,jj = th M (). M I(X)}
(2.10)

f(X) = P)ew,,(WijX) Vi

Remark: There is only one (X)&,y..stricayProt', which is uniquely specified by the a posteriori class

probabilities of X.

Definition 2.4 The probabilistic form of the BDF: This form of the BDF is given by

.W(X) YtMpro~ih ,,• = kM(X) . f. .(X)}
(2.1 I)

f.(X) = f(PwIU(WiIX)) Vi

where V( . ) is a strictly increasing function of its argument:

dW V(z > O, 0 < z <1 (2.12)

We denote the set of all probabilistic forms of the BDF by Ftgax..Ni,,iiic (i.e., every

is a member of Faasp,oj~jiuic).

Remark: There are innumerable probabilistic forms of the BDF, since there are innumerable strictly

increasing functions V (z).

Example 2.2 Consider the following four probabilistic forms of the BDF:

S.€(X)e,,•,..-t,, v.,,ic = .(X)siy,.,.s5,,m•-,.P,•J•i,,;c = ( = PwI.(W;IX); i = 1 ... C}

• -F(X)&jit~s-proha~aii.,ic = {fi(X) = 3 " Pwjx(WIX) + i; i 1,... C}

* Y(X)gs,,:..p,,,i•,ju,,ij =I {fi(X) = log (PwI.(WiI IX)) ; i = I ... C}

* '(X)9,mW.,,NUpk, = {fi(X) = (Pwl(W ijX))2 ; i = I,... ,C}

All of these discriminant functions preserve the rankings of the a posteriori class probabilities of X via a

strictly increasing transformation of Pwl(Wi I X) -4 fi(X). Note that the first one is the strictly probabilistic

form of the BDF F(X)Bay.es.,rcjjY Prnha-ili.mjic.
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1.0 A (wI .t)
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Figure 2.3: The a posteriori class differentials Awix(W.) Ix) for the three-class random variable x depicted
in figure 2.1, plotted over the effective domain of x. These constitute the strictly differential form of the
Bayesian discriminant function for x (see definition 2.5).

Although Y(X)..-snaIyp,.,i.nic and -(X)BaW.P,,,•mC are the most obvious forms of

'(X) ,,, other forms exist. One that satisfies (2.9) is manifest in any discriminant function with a

top-ranked member function f.(X) corresponding to the largest a posterioriclass probability Pwlx (W. IX)

in (2.8). The two categories of this differential form of the BDF are analogous to to the two probabilistic

categories defined above.

Definition 2.5 The strictly differential form of the BDF: This form of the BDF is manifest in any

discriminant function T(X) ,I.ern#aI with the following property: the difference between the ith

function fi(X) and the kth function fk(X) is equal to the difference between their corresponding a posteriori

probabilities. For each fi(X). fk(X) is not chosen arbitrarily; rather it corresponds to the a posteriori
probability Pwlz(WJk I X) = maxhj# Pwl,(Wj I X). Mathematically,

• Y(X)&m h.1eriyt'e,.Hal = {f! (X) ... fc(X)}

s.t. Vi,
(2.13)I

fi(X) - fk(X) = Pw1 ,(W,,IX) - Pwt,(W IX) : Pw,,(Wk IX) = m..x Pwl,,(WIX)

Awt. (•l$iIX)

After some reflection it should be clear that the necessaryandsufficient condition for the discriminant function

to be a strictly differential form of the BDF is that its member functions be related to their corresponding a
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posteriori class probabilities by a constant k:

FM = (X)aaye.-Sr,(,'Derentiai iff fi(X) = P)vK(Wi IX) + k Vi (2.14)

We denote the set of all strictly differential forms of the BDF by FBa,,.s,,•mY D ,fferential.

Remark: Note that, by this and the preceding definition, FBaY.e.Stri.tlv Differential C FsaYex.proahabrii.jic. For this

reason, '(X)8a.s.s,,Tiy Ditrer,,,ial reflects the rankings of all a posteriori class probabilities in the rankings

of its discriminant functions. We refer to Awjx(Wi I X) in (2.13) as the, "(a posteriori) differential of the

* ith class (given X)."

Example 2.3 Figure 2.3 illustrates the a posterioridifferentials {I Awl.(ji IX), ... Awl,(W3 I X)} that

correspond to the three-class random variable depicted in figure 2.1. A review of these two figures and

definition (2.5) reveals that the Bayes-optimal class label W. in (2.8) is Wi for all patterns that elicit a

non-negative ith class differential Awl,((W1 I X):

WU. = W, iff Awi.(WiIX) >_ 0 (2.15)

The bar-graph displays at the bottom of figures 2.1 and 2.3 denote the most probable class W . for x over

its effective domain. The bar-graphs also mark the class boundaries at x = +/ - 2.7.

Note that the class boundaries on X are indicated by the absence of a positive differential; only zero

and negative differentials exist at the boundaries (again, for example, x = +/ - 2.7 in figure 2.3). In such

* cases, the Bayes-optimal class label for a boundary value of X - denoted by Xbtnd.. - is any one of

the classes with a corresponding a posteriori differential of zero:

VXm*&,,, X , W. E {(W : AWIX(Wi lXbavda) = 0} (2.16)

* Definition 2.6 The differenhial form of the BDF: This form of the BDF is manifest in any discriminant

function '(X)Ba,•,.D0wjl with a top-ranked member function f. (X) corresponding to the largest a

posteriori class probability Pw,(Wa. I X) in (2.8). Mathematically,

•'(X)a•.m- 0 erv ,i f = {Ji(X),... fcM(X)}

s.t. Vi,

sign LX) - maxsf(X) Sign P,,W4 IX) - max Pw,(Wk IX)

AdX I .WUIX
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We denote the set of all differential forms of the BDF by Fi e.,-ifferen,,ia

Definition 2.7 The discriminant differential: We refer to 6i(X) in (2.17) as the, "ith discriminant

differential"-- that is, the difference between the ith discriniinantfunction and the largest other discrintinant

finction. We use the notation

,6,(XIo) • g,(X1O) - max gk(X10) (2.18)

when referring to the ith discriminant differential of the the classifier with the discriminator 9(X 1O) =

{gi (XI 0)..... gc(X I O)}. hi this context, the discriminant differential is the difference between the

classifier's ith output and the largest other output.

Remark: Note that Y(X)B.-e.,.Dfer,,,jit accurately reflects the ranking of only the largest a posteriori class

probability in the rankings of its discriminant functions and their associated discriminant differentials. We

reiterate that the only condition necessary for the discriminant function to be a differential form of the BDF

is that its top-ranked member function f. (X) always correspond to the largest a posteriori class probability

Pwix(W. I X) in (2.8). This is precisely the necessary and sufficient condition for Bayesian discrimination

given in (2.9), which leads us to the following theorem:

Theorem 2.1 The differential form of the Bayesian discriminant finction Y(X)Bayes-DifferentiaI is the most

general; the set of all such forms F&.es.oiffeentiat is equal to the set of all Bayesian discriminant finctions

Fye by the following relationship:

.• ( X )& , Sa.•.Stry Pruhabitisic E FgBalvs.Striaty Differerdial C FBay.es.PrI,,ahiti.vic C FBayes.Differenial = Fsao. ., (2.19)

Proof : The proof follows from definitions 2.6 -2.11 I1

Example 2M4 In order to clarify the notion of a differential form of the BDF, let us return to the three-class

random variable x depicted in figures 2.1 and 2.3, which we replicate in figure 2.4.

On the left side of the figure we shown the a posteriori class probabilities of x; superimposed on these
are the discriminant functions

fi(x) = -0.0376x + 0.3985

f 2(x) = 0.5 (2.20)

fi(x) = 0.0376x + 0.3985
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which comprise F•(x). Note that fi (-2.7) = f2(-2.7) = 0.5 and f2(2.7) = f (2.7) = 0.5, so that the

discriminant differentials shown in figure 2.4 (right) are given by

5i(x) = fi(x) - maxfi(x)k#i

{I W(x) - f 2(x), x < 2.7
( f1 (x) - f (x), otherwise

{-0.0376x - 0.1015, x < 2.7

-0.0752x, otherwise

f f(x) -f,(x), x < 0
62(x) = (2.21)

f2(x) - f3(x), otherwise

0.0376x + 0.1015, X < 0

-0.0376x + 0.1015, otherwise{ fW(x) - 2(x), x > -2.7

f3(x) - f, (x), otherwise{ 0.0376x - 0.1015, x > -2.7

0.0752x, otherwise

Note that the largest discriminant function and, as a result, the positive discriminant differential always

correspond to the largest a posteriori class probability of x. For this reason, (2.17) is satisfied and

F•(x) = '(X)sw.jstgjI. By comparing the characteristics of W(x) against definitions 2.3 - 2.6, we

find that Y(x) does not satisfy the conditions for any other form of the BDF.

2.2.3 Learning Paradigms for the Bayesian Discriminant Function

We use the notation XJ to denote the jth example of the random vector X; likewise, we use the notation W'

to denote the class label of that example. Supervised learning is the process by which the n example/empirical

class label pairs {(X I, W 1), ... ,(X n, W 1) } of the training sample7 are used to adjust the parameters of

the classifier so that its labeling of the training examples matches the actual class labels as closely as possible.

As the training sample size increases towards infinity, the empirical a posteriori class probabilities of the

7The training sanple is e set of all pain {(X' W ).....(XR,W*") used to train the classifier. The test sample is used to
assess the classifier's discrimination, and compdse., all pairs not in the training sample.
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Figure 2.4: Left: The a posterioriclass probabilities Pwjx (Wi I x) of the three-class random variable depicted
in figures 2.1 and 2.3, with a differential form of the Bayesian discriminant function W(X)&:,,D,,wjj
superimposed. Right: The a posteriori class differentials Awjx(WjI x) of the same three-class random •
variable, with the discriminant differentials of Y(X). z.1)e9.iu superimposed. Note that where the ith
discriminant differential 6i(X) is positive, Wi is the Bayes-optimal class label for x.

feature vector converge to their true underlying values. For this reason, the classifier possessing sufficient

functional complexitys can learn to approximate the BDF in at least one of the four forms described in the

previous section.

There are two fundamental learning strategies for statistical pattern recognition. Classifiers that employ

probabilistic learning learn to approximate the probabilistic form of the BDF. That is, they learn to estimate

the a posteriori probabilities of the C classes over all of feature vector space - as exemplified by the

gray shaded functions in figure 2.4 (left). The estimation is done either directly or by estimating the

class-conditional pdfrs and class prior probabilities, from which the a posterori class probabilities can

be computed. Classifiers that employ discriminative learning do not learn to estimate probabilities; they

merely learn to estimate the identity of the Bayes-optimal class over all of feature vector space. In effect,

discriminative learning focuses on partitioning X along the class boundaries, thereby identifying regions on

X inside which all patterns represent a single class in the Bayes-optimal sense. This learning is done without

explicitly estimating the a posteriori probabilities of each class over X; instead it focuses on estimating a

*A formal definition of function complexity is ton eential to this chwwle it is sufficient to state that there is some upper bound
on the inuicacy of the discrinmiator 9 (X 10) hat m cassifier with limited functional complexiy can implement.
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Paradigm Differentiable Supervised Learning Strategy Parametric?
Classifier?

Linear Classifiers

Rosenblatt's perceptron yes discriminative"',/ no

Widrow-Hoff (i.e., yes probabilistica no
LMS/MSE-generated)
variants

Ho-Kashyap yes probabilistic/ no

discriminativea,b,(

logistic regression yes probabilistica yes

Non-Linear Classifiers

k nearest neighbors no probabilistic no

Parzen windows no probabilistic no

radial basis functions yes probabilistic" no

multi-layer perceptrons yes probabilistic _ no

decision trees no discriminative no

LVQ2 no discriminative no

Table 2.1: Some well-known classification paradigms and the learning strategies they employ. The
differentiable supervised classifier is described in definition 2.8.

"Can learn differentially.
b~uaanteed to be minimum-error only in the case that the training sample is linearly separable.
eFundamentally probabilistic, but discriminative if the training examples are linearly separable.

differential form of the BDF - as exemplified by the dashed lined functions in figure 2.4. By definitions 2.5

and 2.6, this is equivalent to learning ,Yf(X). i-s•aty .ii to at least one (sign) bit precision over X .

Differential learning is discriminative learning in which the optimal parameters of the classifier are

determined by a search on parameter space e aimed at optimizing a differentiable objective function. Three

definitions are relevant at this point:

Definition 28 The differentiable mperdvsed classifier: This classifier is one that forms an input-

to-output mapping by adjusting a set of internal parameters via an iterative search aimed at optimizing a

differentiable objective function (or empirical risk measure). The objective function is a metric that evaluates

how well the classifier's evolving mapping reflects the empirical relationship between the input patterns

of the training sample and their class membership, modeled by the classifier's outputs. Each one of the

classifier's discriminant functions gi(X 10) must be a differentiable function of its parameters 6.
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Definition 2.9 Probabilistic learning Ap: Any classifier that learns a probabilistic form of the Bayesian

discriminant function ((X)a r i (definition 2.4) employs probabilistic learning. We use the

notation AP to denote probabilistic learning. If the classifier is a differentiable supervised classifier (defined

above), it implements probabilistic learning through the use of an error measure objective function (see

sections 2.2.4 and 2.3).

Definition 2.10 Differential learning AA,: This is discriminative learning performed by a differentiable

supervised classifier (defined above) that employs the classificationfigure-of-nmerit (CFM) objective function

(see [55], sections 2.2.4 and 2.4, and appendix D). A classifier that employs differential learning learns 0
the differential form of the Bayesian discriminant function YF(X)BaYe.TD.ifferenfia (definition 2.6). We use the

notation AA to denote differential learning.

Table 2.1 lists a few well-known classifier paradigms and the learning strategies they employ; it

emphasizes that all classifier paradigms can be associated with either the probabilistic or the discriminative

learning strategy. Classifiers characterized as "linear" are those that form (piece-wise) linear decision

boundaries on X; those characterized as "non-linear" form potentially non-linear decision boundaries on

X. Rosenblatt's perceptron, the Widrow-Hoff linear classifier, and the Ho-Kashyap linear classifier all have

linear discriminant functions gi(X 190). Reference [29] describes each of these three classifiers in detail; they

differ only by the manner in which they learn. Specifically, each uses a different objective function to search

iteratively for optimal parameters. Thus, they constitute differentiable supervised classifiers. Rosenblatt's

perceptron criterion function [ 116, 29] seeks only to classify X correctly, not to estimate the a posteriori

probabilities; as a result, it is a discriminative learning procedure (see appendix E). The Widrow-Hoff and

Ho-Kashyap variants both minimize a mean-squared error objective function: the Ho-Kashyap model adds

a constraint to the MSE-minimization procedure that guarantees class separation of the training sample if

it is indeed linearly separable. As we shall see in section 2.3.2, minimizing an MSE objective function is

equivalent to approximating the a posteriori class probabilities of X - a probabilistic learning strategy.

The logistic regression model replaces the preceding linear discriminant functions with logistic discrim-

inant functions gg(X 1) [ + exp (-(Oo + E 61x1)) (e.g., [91, ch. 81 [68]). Although the

decision boundaries on X remain (piece-wise) linear, the logistic discriminant function is a better choice for

approximating the a posteriori class probabilities of X - particularly when the class-conditional pdfs of X

are Gaussian (see appendix F). The logistic regression model learns by the method of maximum-likelihood,

but the logistic non-linearity makes closed-form computation of the optimal parameters impossible. For this

reason, logistic regression takes the form of an iterative learning procedure in which the Kullback-Leibler

information distance ([82, 811 - see section 2.3.2) between the discriminant function(s) and the empir-

ical a posteriori class probabilities of X (manifest in the training sample's statistics) is minimized (see
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appeidix F). Since the logistic discriminant function it incorporates is identical to the one employed in

multi-layer perceptron (MLP) classifiers [ 120], the logistic regression model can be viewed as the MLP in its

simplest form. Both the logistic regression paradigm and MLPs are probabilistically-generated differentiable

supervised classifiers.

The k nearest neighbors algorithm estimates the class of a test example by comparing it with the most

likely class of the k nearest training examples. The likelihood of each class is estimated by its relative

frequency among the k nearest training examples. As the training sample size grows large, these relative

frequencies converge to the true a posteriori class probabilities of X, so the k nearest neighbors paradigm

learns probabilistically. The lack of an objective function-directed learning procedure disqualifies it as a

differentiable supervised classifier.

Parzen windows attempt to estimate the class-conditional densities of X via a linear superposition

of window functions - one for each training sample. The specific form of the window function is not

particularly important, as long as it is unimodal and has a unit area under its curve. The volume of X

that the window covers is variable. As the training sample size grows large, the linear superposition of

window functions for a given class converges to the true class-conditional density of X [29, sec. 4.3], so

the paradigm constitutes a form of probabilistic learning. Again, the lack of an objective function-directed

learning procedure disqualifies it as a differentiable supervised classifier.

Radial basis function neural networks (RBFs) (e.g., [18, 95, 104,921) are - like MLPs mentioned earlier

- discriminant functions formed by cascaded layers of non-linear basis functions. In the case of MLPs, the

basis function is a logistic one that forms linear decision surfaces; in the case of RBFs, the basis function

is most commonly a Gaussian one that forms radial (i.e., hyperelliptical) decision surfaces. Beyond these

differences the models are quite similar. Both are differentiable supervised classifiers that typically employ

probabilistic learning.

Decision trees are discriminative classifiers that form lineardecision surfaces on X via a set of thresholds;

these thresholds are expressed as a set of rules associated with each class of X; the rules are expressed in

disjunctive normal form (DNF)'. 'There are numerous methods by which the rules for dividing X into class

regions are induced (see, for eximple, [139, ch. 5]). The details of rule induction are not important for our

purpose, which is merely to point out that the process is fundamentally discriminative. Because the rules of

the DNF are, in effect, step functions on X, they are non-differentiable, and the resulting classifier does not

satisfy the requirements for a differentiable supervised classifier.

The general family of vector quantization (VQ) classifiers contains paradigms that are probabilistic as

well as discriminative.' 0 The k nearest neighbors paradigm described earlier can be viewed as a probabilistic

VQ classifier. Discriminative variants also exist. The most notable is the LVQ2 paradigm [761, which

9See [139, pg. 1141 fora simple definition of the DNF.
"OSee [891 for an extensive summary of vector quantization techniques through the early 1980's.
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CFM WM

Discriminator 1=c... = I
Ourpe State Target Vector

A . 0.0 .
-1.0 -0.0 1.0

Figure 2.5: A diagrammatic comparison of er- Figure 2.6: A synthetic asymmetric sigmoidal form
ror measure (EM) and classification figure-of-merit of the classification figure-of-merit (CFM) [551
(CFM) objective functions (darker outputs have shown for discrilninant differential values on the
larger values than lighter ones). EMs attempt to interval - I < 6 < I. The shape of the sigmoid
match the discriminator output state (left) with a is controlled by a confidence measure V, on (0,1]:
target vector (right); CFM does not. Instead it uses or [6, V)] is shown for eight different values of V/,.
the target vector merely to identify the discrimina- The differentiable function of 6 is nearly linear for
tor output y,. corresponding to the class label of
the classifier's input example. CFM then seeks to a confidence measure of unity. In the limit that 4'
maximize a function of the difference (or discrini- is zero, the function becomes a Heaviside step. The
inant differential) 6, between this output and the synthetic function and its first derivative are easily
largest other output (in this case, y, ). The function computed (see appendix D).
CT [6, V,] is shown in figure 2.6.

associates a number of prototypical vectors with each class. The vectors are initially determincd by k-means

clustering (e.g., see [891). Learning is then performed by iteratively perturbing the vector locations on

with the goal of minimizing the number of misclassified training examples. The learning strategy is therefore

discriminative; the resulting classifier does not satisfy the requirements for a differentiable supervised

classifier.
Table 2.1 lists only a few classifiers. Countless others exist, but each is either a differentiable supervised

classifier or it is not. The remainder of this chapter - and this text - deals with those that are, since all

such classifiers can employ both probabilistic and differential learning.

2.2.4 The Link Between Objective Function and Learning Strategy

In section 2.3 we prove that differentiable supervised classifiers generated with a broad family of error

measures (EMs) learn probabilistically; that is, they learn a probabilistic form of the BDF described by

definitions 2.3 and 2.4. In section 2.4 we prove that these same classifiers learn differentially when generated

with the CFM objective function [551; that is, they learn a differential form of the BDF described by

definition 2.6.
Figure 2.5 compares error measures to the CFM objective function diagrammatically. Error measures
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0 such as mean-sqtared error (MSE) and the Kullback-Leibler information distance [82, 811 - - known as
"cross entropy" (CE) in the neural network literature (e.g., [641) - compare the classifier's discriminator

output state with a target vector T". Given a training example/empirical class label pair (Xi, Wi = uo,),

the rth element of T (r7,) is typically unity, indicating that the empirical class label of the example is

0 W.. All the other elements of T are typically zero.'I The right-hand side of figure 2.5 illustrates how the

classifier learns via an error measure: it alters its parameters in order to match the discriminator's output state

with the training example's target vector. This is done by minimizing the error measure (EM) between these

two vectors. The arrows superimposed on the gray shading between the discriminator output state and the

* target vector symbolize the process, which is iteratively repeated for all examples in the training sample until

the average error measure converges to a small value.

Unlike its EM counterparts, the CPIM objective function has no target values; this is because it is not

an error measure. The left-hand side of figure 2.5 illustrates how the classifier learns via CFM. It alters its

discriminator's parameters in order to maximize the discriminant differential 6, between I) the output y-

corresponding to the class label W, of the example, and 2) the largest other output T7 (note that T, = y,

in the figure):' 2

S- ;(2.22)

) = W, y"r = max y,
kvir

Notational convention for the discriminant differential: We generally omit the subscript r when

referring to the discriminant differential. Absent a subscript, the notation 6 always implies 6r..

The single curved arrow superimposed on the gray shading to the left of the discriminator output state in

figure 2.5 symbolizes the computation of 6•, which is maximized by maximizing the measure a [6-, 1b].

The maximization is iteratively repeated for all examples in the training sample until the average CFM

converges to a large value. Note that the target vector 7 is used only to identify yr.

Definition 211 The CFM objective function' 3: The CFM objective function for a given example is a

strictly increasing function O [6, V1] of the discriminant differential 6 corresponding to the empirical class

label of the training example. The function must have a sigmoidal form that spans the continuum between a

linear function of 6 and a step function of 6. The maximum steepness of the sigmoid is regulated by the

" 7 need not be binary. The following proofs allow for non-binary target vectors.
121t is important to note that the identity of the largest other output T in 6, is stochastic, it not only varies across examples, it may

* also change for a given example as learning progesses •551.
1-Throughout this text we refer to the form of CFM that involves the computation and use of one and only one discriminant differential.

This is the form of CFM originally described as "N-monotonic CFM": see 155, pg. 226).

0
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confidence parameter V',. The specific imnctional form of 0- [-] is not important, as long as it satisfies the

following sigmoidal constraints:

"* The function must havefinite lower and upper bounds I and h:

- o < I < 71 [6,.I'] < h << oo (2.23)

"* The function must be be a strictly non-decreasing signtoidalfunction of 6:

rd
7Oia VpJ > 0. for small 161
.d [6. L] _ 0. otherwise

"* Thefunction must have a maximum slope occurring in its transition region. This transition slope must

be inversely proportional to the confidence parameter V):

max do" [($,' o/, ?P •-', V/' E (0,1]I (2.25)
6

This proportionality requirement ensures that learning is reasonably fast (see section D.3). 5

Remark: We use an asymmetric sigmoidal function for or [-], which satisfies the constraints above as well

as others imposed by theorem 2.2 of section 2.4 and chapter 5; it has lower and upper bounds of I = 0 and

h = I . This function is illustrated in figure 2.6; it is expressed by a computationally efficient mathematical

form (see appendix D). The original sigmoidal form of the CFM objective function is given in [55114, but

the synthetic form described herein has a number of advantages relating to its computational efficiency and

the differential learning rates it engenders (see appendix D and chapter 5). Figure 2.6 illustrates the synthetic

function on the interval -I < 6 < I for eight different confidence values V,. Note that this synthetic

function is approximately linear in 6 for ) = I and it is a step function of 6 for V/, -4 0+:

limeo,, [ + 1)

S o" 4 T [6$,6b] = { 0I 6>0 (2.26)

l 0, otherwise

The parameter 1P is described further in section 2.4 and appendix D.

If the number of classes C is two, the discriminator O(X 16) is linear, and the classifier learns

differentially via the CFM objective function, the resulting paradigm is quite similar to Rosenblatt's

14 1n this reference the parlameter #l is proportional to I/l/'.
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perceptron [I16]. Indeed, appendix E shows that one can view differential learning via CFM as a

generalization of the two-clas. perccptron approach to discriminative learning. The generalization is such

!hat

"* there is no restriction on the number of classes C,

"* there is no restriction on the functional form of the discriminator (except that g (X 1 0) be differentiable

on parameter space e),

"* the learning procedure involves an iterative search on e aimed at maximizing a differentiable CFM

objective function 0" [-1.

2.3 Probabilistic Learning Ap

The differentiable supervised classifier learns probabilisfically by adjusting its parameters to minimize an

error measure over the training sample. We assume that a number of favorable conditions exist prior to

learning, in order to be sure that the classifier learns a probabilistic form of the BDF ' E

F&s.sp.,railwic (see definitions 2.3 and 2.4):

* We assume that we have access to an unlimited number of training examples, so that we have sufficient

data to learn .(X)&ns.prombilj.,ic precisely.

* We assume that the discriminator Q(XI1) has sufficient functional complexity, 6 to learn

Yf•(X)Baiye..ProIba~iliic precisely. Specifically, we assume that the classifier's parameter space e
contains at least one point 06 that both minimizes the error measure (EM) over the training set and

satisfies the constraint ! (X 10 ) E Fsov.,Prolihiti.,,c.

e We assume that the algorithm we use to search for the parameters 0* is guaranteed to find 0* , given

sufficient time and computational resources.

In short, we assume that '(X)m,.p, ij is learnable to the extent that we have sufficient (possibly

infinite) information, computational, and temporal resources to learn it. We are not yet concerned with the

efficiency of the learning procedure; we are merely concerned that it does the right thing, given enough

resources. We address the issue of learnability in more realistic terms in the chapters that follow.

"IIBamrk PearIlmuitter has made imolotant contributions to the material in this section. We note in particular his original formulation of
I) the general error measure (the present formulation is a minor extension), and 2) the strictly probabilistic constraint of (2.45).

16 Again, we eschew a formal definition of functional complexity in this chapter, stating merely that there is some upper bound on the
intri caof the diacrinunaim functions that a classifier with timited functional complexity can implement. We assume that the classifier
has sufficient complexity to learn the probabilistic form of the BDF. While the proofs of this chapter are not limited to neural network
classifiers per se, we note the proofs that feed-forward neural networks can learn arbitrarily complex mappings 124, 1431.
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2.3.1 The General Error Measure

Given a training example/class label pair (Xi, Wi), the target vector T for the discriminator outputs Y

has elements that can assume one of two states. The target vector element corresponding to the empirical

class of the training example is set to the high state D, and all the other elements are set to the low state "'D

(read, "not D"):

T = (r, .  T .); E I {-D,D)}C

r,((X, IWi)) = (2.27)
-,D, otherwise

D E •R; -•D E IR; -•D < D

We require a particular kind of symmetry in the general error measure I. J: a discriminator output Yi

that is higher than its low-state target -,D by the amount e must generate the same error as a discriminator

output yk that is lower than its high-state target D by e. This symmetry constraint reinforces our intuitive

notion that the error measure should penalize all missed targets in a consistent manner. Mathematically,

[yi = -,L + E, r7 = -lDJ = ýD = D - e, rk = DI VE E R (2.28)

The general measure of error between the ith discriminator output and its target is therefore given by

(U[g,(Xj 10), r,((Xj, Wi))]

.,i{ f(r,((Xj,Wj)) - g,(XJ 1)), T,((XJ,WJ)) = D

f(gi(XJlO) - T,((XJ,W j))), T,((XJ,W)'=)) --,

rf(D - gj(XJIO)), Wi = Wi
(2.29)

f(g(XJ 6O) - --D), otherwise

The function f(. ) in (2.29) is positive definite, with a unique minimum occurring when its argument is zero:

f(u = 0) < f(u #0 ) & d2-f(U) >0 (2.30)

Equations (2.28) - (2.30) are minor variants of the expressions in [54, sec. 3.11. Miller, Goodman, and

Smyth have derived similar expressions independently in [93J.
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The total error generated by a training sample S" is the sum of the C error terms in (2.29), over all

discriminator outputs, for each example:

c
EM (S"IO 10 -ej

i= !

SI -(2.31)

e 1 = : -Ig x 10), r (X j, - })M
n

j=1

Up to this point we have used the notation (X' , WJ) to denote an example XV of X and its associated

class label Wj. Now we introduce the notation XJ to denote an example of X having the specific valueP

X, - a unique pattern or prototype (terms that we use synonymously) of X (i.e., a particular point on X

identified by the subscript p ). No two prototypes represent the same point on X ( X. = X1, iff a = b ),

and there is no restriction on the number of prototypes. 7 We denote the class label associated with X]I by

WX, and we denote the resulting example/class label pair by (Xp , W4j) . Using this notation, we can re-state

ej in (2.31) as

e I )P)

0ge( = - 1 1 ýfgj(X Ojri((XJ, W))] (2.32)
p= ,/=-I

where P denotes the total number of unique patterns and np denotes the number of examples of the pattern

X, among the n training examples. Thus, Fi;, np, = n. If we use np,, to denote the number of examples

of the pattern Xp having the class label Wj, such that Ec' n,,j = np,, (2.29) can be used to simplify

(2.32), replacing the notion of examples with the more general notion of prototypes:

P

ej = n 1 [npi- .f(D - gi(X,119)) + (np - np,,) .f(gi(XpIe) - -D)] (2.33)n
p=I

Thus

EM(8S-I0) = !E P2E np,' .f(D - gi(X, 1o)) + (nh - n.,,) .f(gi(Xp,&) - -,D)] (2.34)
i= n p I l p np

As the training sample size n grows asymptotically large, the empirical frequencies converge to their

underlying probabilities. ts Thus,

17lndeed, we assume the number of prototypes to be infinite for the uncountable feature vector space.5Sfee appendix B. Note also that we ar not yet concerned with the specific rate at which this convergence takes place.
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C P

lim EM(S"I6) W 1 Px(Xp) [Pwjx(W,.I;Xp) .f(D - g,(Xp10))

+ Pwjx(--W I XXp) f(gi(X 10) - -D)] (2.35)

where

PIVIx(-iuI Xp) • I - PwIx(WiXr) (2.36)

Simultaneously, the number of patterns P grows asymptotically large, such that EM (S' 0) converges to

the expected value of the error measure over X, which we denote by EX [EM(X 10)]:

lim EM(SnI0) = EX [EM(XIO)]
P--.W•

c [(o - gi(X O)). Pwgx(WuIX)X Vo_ (2.37)

+f(gd(X10) - -D) - (I - Pwix(WIX))] px(X) dX

Ex[ei(X)I

SLf(D - g,(X 10)), PeVx(W IX)
iIX Px(X)dX (2.38)

+f(gi(X 10) - -'D) • (I - Pwix(WiIX))]

EM(X10)

To minimize Ex [EM(X 10)] with respect to the parameters 0 of the discriminator 9(X 10), we

solve for 08 such that

V 0 (EX [EM(XI10)]) = EX [V 0 (EM(X 1'))] = Q, (2.39)

where V 0 (EM(X I 0)) denotes the gradient of EM(X 10) with respect to 0, evaluated at 69, and 0

indicates the vector with zero magnitude. In order for (2.39) to hold for any and all px(X) on X (as a

trivial example px(X) = 6(X - Xo), where 6(.) denotes the Dirac delta function [80, pg. 266]), it is

necessary that the error measure's gradient V 0 (EM(X 10")) be zero for all values of X:
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•f Vf(O -- gi(Xl10')).- P), x(Pi IlX) =0 VX E X (2.40)
i=1 +f(gi(XIO') - -OD) (I - Pwix(WI]X))

"e, (Xj

EM(XjO")

This, in turn, requires that

Soe(X) = e,(X) Ogi(X ) = 0 VO', VX E X (2.41)

ag,(X 10) 007

Clearly, (2.41) is satisfied if the ith discriminant function's derivative with respect to the paratr.Ater 01 is

zero, but we are interested in the more general case for which this derivative is non-zero. Indeed, manipulating

the parameters that affect the discriminator's functional mappings (i.e., those for which A- g,(X 10) 0 0)

is the whole point of learning. Thus, if the error in (2.37) is to be minimized independent of the values

* { g I(X 19),... gc(X1O)},it is necessary that

Oet(X) ((D - g.(Xl1')). Pwpx(W, IX)

og,(Xf69o)

+f'(g,(X I0") - -'D) • (I - Pwvlx(WiIX))]

- 0 Vi, VX E X (2.42)

(where f'(z) denotes If(z) ). Rearranging terms,

f'(D-g,(X 10)) Pwlx(W, IX) = f(g 1 (X 11') - -D) . (I - Pwlx(W1 IX)) Vi, VX E X (2.43)

or

f'(D - g(XIt')) = (I - Pwlx(WaiIX)) Vi, VX E X (2.4)
f'(g,(X1O') - -'D) PWvx(WiIX)

If we add the additional strictly probabilistic constraint on on the functional form of the error measure f(.)

f(D - gt(XlO)) = f'(g,(X10) - -D) 0 - gi(XI1)) Vi, VX E X (2.45)
g,(X1O)
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then (2.42) becomes

- ')-g,(X60))• Pwl;x(W3,X) - f(g(Xl0") - -iD)-(I - Pvvix(W,'IX))

00

= f'(gi(X 10) --D) [P)Vx(W, IX) -

= 0 Vi, VX E X (2.46)

Equation (2.46) requires that

gi(XIO") = Pwlx(WiIX) Vi, VX E X (2.47)

Thus, the differentiable supervised classifier learns .(X)&ae.SfiayProIbijiani when (given our favorable

assumptions) it is generated with an error measure satisfying (2.28) - (2.30) and the strictly probabilistic

constraint of (2.45).

2.3.2 Specific Strictly Probabilistic Error Measures
S

One family of error measures satisfying the strictly probabilistic constraint of (2.45), has the following

functional forms:

f(u) = Uf u (",u)y-|di
(2.48)

f'(u)= (")-

where r is a positive integer,

y Y- ",D, r, = -,D

D - Yi, 7"i = D
(2.49)

D {- Y, T =D

Yi - ",D, 7"i = D

and we employ the relationship y, = gi(X 0 9) to simplify our notation. Using (2.49) and the relationships

d
-(y, - -,D) = I s.t. d(y; - -,D) = dy, (2.50)

d
T(D -y,) = -I .t. d(D -y,) = -dy,, (2.51)
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we can expand (2.48) via two simple transformations of variables

f(Yi - -_D) = .f (Yj - -D)r (D - yj)rI-' dy

f(D - y;) = -. f (D - yi)r (yv - -D)'-l dyi

(2.52)
(yj - -'D) = (Yj - -.D)r (D - y,)r-I

f'(D - yi) = (D - .,)r (y- D)r-

* Substituting (2.52) into (2.44), we find that minimizing this family of error measures leads to the following

relationship between the discriminator outputs and their corresponding a posteriori class probabilities:

D - Yi I - Pw)x(W,'i iX)--- (2.53)
Y -- "D PIVlX(Wui X)

y= Pwlx(Wi IX) - (D - -,D) + -'D (2.54)

Note that if the low and high-state target values are binary, the discriminator outputs equal their corresponding

a posteriori class probabilities:

0Yi = Pwlx(WMIX); --D = 0, D = 1 (2.55)

However, even if the target values are not binary, the discriminator outputs remain linear functions of their

corresponding a posteriori probabilities. Since differentiation is a linear operation, any linear combination of

K functions fk(u) satisfying (2.28) - (2.30), and (2.45)

K

(1(n)= E o0fA(u) (2.56)
k=I

will constitute a viable error measure. The linear coefficients (Wk must have values that enforce the constraints

of (2.30) on O(u), such that

d2
O(u = 0) < O((u # 0) & _-..O(u) > 0 (2.57)

The family of error measures described by (2.48) and (2.49) has two familiar members.

(r = 0) Knllback-Leibler information distance: When r = 0 in (2.48),

f(u) = ('u)-ldu = -log(-"u) s.t. fyi,7"i] -= (2.58)

-log(yi - ",D), 7- = D

0
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When the low and high-state target values are binary, the error measure is the Kullback-Leibler in formation

distance [82, 811] - known as "cross entropy" (CE) in the connectionist literature (e.g., [64]):

J-Iog(I - Y)), T7 = --,D = 0
([Yi,-I-i] (2.59)

--log(yi=), i = D =I

Note that the discriminator's output Y must be bounded in order for f( ) in (2.58) to both exist and meet

the constraint imposed by (2.30):

Y E Y = [l,h]7; I > -D, h < D, I < h (2.60)

If I < -'D U h > D above, then -iu can be negative, and - log(,u) will be undefined. If

I > -_D, h < D above, the constraints imposed by (2.30) will be violated, strictly speaking. However,

for practical purposes, setting low and high-state target values that are beyond the limits of the discriminator

outputs when f(. ) is given by (2.58) is equivalent to setting -,D = I and D = h. Thus, the Kullback-Leibler

information distance dictates discriminator outputs on any subset of the output space Y E [0, I ]c . With these

constraints, the Kullback-Leibler information distance-generated classifier learns .F(X)as.,,i.tyr,,,,isic

by the following proof:

C C P r..(,-1E E E p [ (ti - ""~)]
CE(S"I) = e= --- -[,' log(giX,1•,)) + • log(I - gi,(X10))

i=1 i=1 p=1 It I np tP

(2.61)

Following the derivation for the general error measure in (2.35) - (2.38), we obtain the expected value of the

Kullback-Leibler information distance (cross entropy - CE), which we denote by EX [CE(XI 0)]:

lim CE(S"I1) = EX [CE(XI0)]
P-+oo

i_ + log(I - gi(Xl1))- (I - Pwlx(WiX))] Px(X)dX

Ex[e,(X)l
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cc ~[log(g,(XlO)) •Pwl(WJ)ix
= [l px(X) dX (2.63)

+ log(I - g,(X 1)) (I - Pn x(W, X))]

*CE(XIO)

To minimize EX [CE(X 10)] with respect to the parameters 0 of the discriminator g(X Ji), wesol'o

for 0' such that Ve (EX [CE(X 1-)]) = EX [V0 (CE(X10-))] = 0. Following the litany of

(2.39) - (2.42), we obtain the necessary condition for minimizing EX [CE(X I 0)] :

0 e.(X) _ IOgi(X1O) g 7(XO) " Pwix(W IX) - I - g0(XjO) (I - Pwix(WsIX))
agi( 10) giX 1 ) - g~x 0*)(2.64)

- 0 Vi,VXEX

In order for this equation to hold for any and all px(X) on X, it is necessary that

Pwix(WuIX) I - Pwix(WilX) Vi V X (2.65)
gi(X16") I - gi(Xl10)

or

g;(XI*) = Pwix(WIX) Vi, VX E X (2.66)

Again, if the low and high-state target values for the Kullback-Leibler information distance are not binary

but meet th, constraints of (2.60), the discriminator outputs will be a linear function of their corresponding a

posteriori probabilities: gi(X 10) = Pwlx(Wi I X) • (D - -,D) + -D.

(r = I ) Mean squared error: When r = I in (2.48),

0 f I f ½(yi - -D) 2 , 7ri =-D
f(u) = udu = U2  s.t. [yi, ri] = 2 (2.67)1 2 1(D - y)2, Ti = D

the error measure is the mean-squared error (MSE) objective function:

Iyi, Ti] = I (y, - r,) 2  (2.68)

MSE has the particularly nice property that it satisfies the constraints of (2.28)-- (2.30), and (2.45) regardless

of the nature of D, --D, and Y.

With binary target values, the MSE-generated classifier learns (, Probl.hiic by the following

proof:
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9

MSE(S"I1) = e = Z n (g,(Xe C0)- )2 + (n, - gi,(Xp 1e)2
2= 2 i=1 |p= n lip np

(2.69)
Following the derivation for the general error measure in (2.35) -. (2.38), we obtain the expected value of the

mean-squared error, which we denote by EX [MSE(XI 0)]:

lirn MSE (S"'I) = EX [MSE(XIO)]
fl-+0C.

, 1 •[g([ )-,)2. pwIx(Wzi IX)

E I [jJi=x 1) ) (2.70)

2 )
+ [g,(X 1)'-• (I , Pix(WIX))] p(X)dX

Ex,[e,(x)J

E [(g1(x1e) - 1)2 . PWIX(W I X) px()dX (.1-= 2= Px(X)dX (2.7!)
X+ g,(x I1)2 • (I - Pwlx(WiIx))]

MSE4X 10)

To minimize EX [MSE(X 10)] with respect to the parameters 0 of the discriminator 9(X 0), we

solve for 0* such that Ve (EX [MSE(X 10)]) = EX [Ve (MSE(X10*))] = 0. Following the

litany of (2.39) - (2.42), we obtain the necessary condition for minimizing EX [MSE(X I )]:

Oei(X)
8g8 (X 10') = (g'(XIG) - I). Pwlx(Wu IX) + (g,(X119)) (- - Pwlx(W, IX)) (2.72)

= 0 Vi,VXEX

In order for this equation to hold for any and all px(X) on X, it is necessary that

(I - g,(X 10)) • Pwlx(WiIX) = gi(Xle). (I - PWIvx(WI X)) Vi, VX E X (2.73)

or

gi(X10) = Pwjx(WJgX) Vi, VX E X (2.74)
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Again, if the low and high-state target values for MSE training are not binary, the dis-

criminator outputs will be a linear function of their corresponding a posteriori probabilities:

gi(XI1) = Pwix(WiIX) • (D - -,D) + --,.

2.3.3 Minkowski-r Power Metrics and Other Common Error Measures

The Minkowski-r power metric 19 is given by

i (y, - Ti)' (2.75)

If we constrain discriminator output space as in (2.60),20 the metric's functional form reduces to

f(u) =
r (2.76)

f'(u) = -

Given u in (2.42),

(D -( )j)=, r= D

yi,- = r D-=-D(2.77)

( - -'Dr, T, = -1
r

Substituting (2.75) into (2.44), we find

D - Yi r- I I - Pwx( IX)(2.78)
yj - -Pwx(W1 DX)

D + -,D(• = + + , I<r<oo

I + ( (2.79)

= (I+ ; -D=0, D = I, I < r < oo

For binary target values, the discriminator outputs engendered by the limiting values of r are

19T1. Minkowak-r power metric and the Li norm (e.g., (78. ch. 41) are closely related, but not identical.
2l! can be shown that if the constlrnts of (2.60) are violated. Minkowsti-r power metrics can require complex discriminator outputs

in order to satisfy (2.44).



42 Chapter.2: Probabilistic and Differential Learning

1.0_

0.5 r= 9

Er r1.125

0.0 1

0.0 0.5 1.0 -

P1,x(O, il X)

Figure 2.7: The discriminator output's minimum-error value for the Minkowski-r power metric
( r 1.25,2,9; binary output target values).

I , Pwlx(W, IX) > .5
lim Y5  = .5, Pwix(WiIX) = .5
r-- I

0, Pwlx(WuiI X) < .5
- = 0, D = 1 (2.80)J1, PWpX(Pi I X) =I

lim , = .5, 0 < Pwlx(Wu I X) < I

0,X w ix( IX) = 0

Figure 2.7 illustrates the relationship between the discriminator output and its corresponding a posteriori

class probability for three Minkowski-r power metrics with binary target values ( r = 1.25,2,9 ). The r = 2

case corresponds to the MSE error measure described earlier.

(r = I ) Mean absolute error: Note that when r = I in (2.75) - (2.77), t[- is the mean absolute

error (MAE) measure.2' Because, by (2.80), this EM engenders binary discriminator outputs, it is not a wise

choice for pattern recognition tasks in which (the number of classes) C > 2. In such cases it is possible

that all the a posteriori class probabilities are less than 0.5 for some values of X. At such points on X, the

absolute error-generated classifier's discriminator outputs will all be zero by (2.80), and it will fail to identify

the Bayes optimal class of X - a particularly undesirable characteristic. However, when C = 2, MAE

has some desirable properties, which we discuss in section 5.3.1 (page 127).

21 The mean absolute error meamu is known by -may other names; the mot common are last absolute error (LAE) and least absolute
deviation (LAD. e.g.. (9]).
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The r = oo case above engenders discriminator outputs that are all constant at 0.5 - resulting in a

useless classifier. Values of r on the open interval (I , oo) engender discriminator outputs gi(X 10) that

are strictly increasing functions of their corresponding a posteriori class probabilities PWjx(W)i I X). Thus,

classifiers generated with Minkowski-r power measures ( I < r < 0o ) learn F(X)Baye.sprobahili.ic of

definition 2.4; only the r = 2 form leads to )C(X)Bayves-$tricly Probabilisic of definition 2.3.

Other classes of error measures exist (e.g., [6,98,31,43, 94]);22 in general they are variants of well-known

EMs, and can be analyzed via (2.44) to determine the discriminator outputs they engender for asymptotically

large training sample sizes. It is intuitively appealing that error measures - with a few notable exceptions

-- lead to classifiers that learn probabilistically. On the other hand it leads us to question - solely on the

basis of learning efficiency (chapter 3) - the comparative advantage of choosing one error measure over

another. To be sure, the statistical pattern recognition literature shows that specific error measures lead to

more efficient learning, given particular class-conditional densities of X. To date, however, we know of no

single best-choice EM for the feature vector with arbitrary class-conditional densities.

2.4 Differential Learning AA

The differentiable supervised classifier learns differentially by adjusting its parameters to maximize a

classification figure-of-merit over the training sample. We assume that conditions analogous to the favorable

conditions preceding probabilistic learning exist prior to differential learning, in ordcr to be sure that the

classifier learns a differential form of the BDF W(X)B•'s-Differemg,,i E FBaYe.,-Differential (see definitions 2.5

and 2.6):

@ We assume that we have access to an unlimited number of training examples, so that we have sufficient

data to learn some YF(X)&iak,.cvigerentia1 E FB&ye.,.Differetiai .

* We assume that the discriminator !(X 10) has sufficient functional complexity to learn

Y(X).0.Dpretil Specifically, we assume that the classifier's parameter space e contains at

least one point 0* that both maximizes the CFM objective function (see section 2.2.4, chapter 5, and

appendix D) over the training set and satisfies the constraint Q(X 1 0) E Fa,8 .n.D.oif,,dia •

* We assume that the algorithm we use to search for the parameters 06 is guaranteed to find 0 , given

sufficient time and computational resources.

The measure of CFM generated by a training sample SM is the sum of 0"1 [ in definition 2.11 for each

example:

22See (91, Sec. 1.121 for an extensive list oferror measures.
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CFM (S"MJ0) • - • (a[67 (X~I0).,V,] : WJ= w1.) (2.81)
n

j=I

P n.

It- E j 0( [5,(Xpjx I).,'] w= ) (2.82)
p=I j=I

where n is the training sample size, and P, ne,, and np,i (below) are defined in section 2.3.1. Equation

(2.82) can be simplified by replacing the notion of examples with the more general notion of prototypes:

1P

,. = n [ Un,,. 0 [b,(xp 10)., (2.83)
p= I

Thus

CFM(S"10) = _ [. or [6i( X p 10),•/,] (2.84)
i-- Ip=E E n LnpJ

As the training sample size n grows asymptotically large, the empirical frequencies converge to their

underlying probabilities.2- Thus,

lirm CFM(S'I1) = [Pj PxW'X). UO(2.85)
x(Xp 00E1 WIX~ PiI XP) [6' i(Xp91.)/V1J

p-_Il i=11

Simultaneously, the number of patterns P grows asymptotically large, such that CFM (Sn 0 9) converges in

probability to the expected value of the CFM objective function, which we denote by Ex [CFM(X 1 0)]:

lim CFM (S" 1) =EX [CFM(X 10)] a [6(x 10),~b Pwx.IX px(X) dX
--- -- -- -- -- 10I

CFI(X 10)

(2.86)

In order to maximize Ex [CFM(X I0)] in (2.86) for any and all px(X) on X, we must maximize

CFM(X 10) for all X e X. Since the 6 terms in (2.86) we not independent of one another (see (2.87)

and (2.90) below) CFM(X 9) cannot be maximized term-by-term; it must be maximized as a whole.
23See Fapendix B. Note, a in the preceding probabilistic learning prooft, we ae not yet concerned with doe specific ate at which this

convergence takes place.

01
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Additionally, since do_ I •J is non-negative, the common approach of differentiating CFM(X 10) with

respect to some function of the 6 terms is untenable. Instead we must take a less direct approach.

Suppose we rank the discriminator outputs, using the subscript (j) to denote the jth-ranked output (not

to be confused with the subscript j, which denotes the output associated with Wj ):24

y(2) = max gk(X 10)
k

Yf2) = max gk(XIO)

yo)'( = max g k(X 10)kf f(I),(2)) (2.87)

y'(Cj = min 9k (X 10)

Then, by

= Ay - max Vk (2.88)

or equivalently,

bi(X 10) = g1(X 10) - max gk(X 1) (2.89)

each discriminant differential 6(j) can be expressed in terms of the largest one ( 6(t)) minus a positive

rank-dependent value e(j) :

b•(l) = Y(f) - .)'(2)

*6 j) = Y) - Y() = -641)- E) ; j > 2 (2.90)
A

E Y)=V(2) - Y(j) Vj > 2; E(2) = O, %) -- 0

Using u)(1) to denote the class associated with the ith-ranked output y(q) and discriminant differential by,

C

CFM(XI1) = 0 [6(,l(X119),] V • Pwlx(Wo(, IX)
1= I

= 07 [64)(X 1). .] • Pwix(W(I) IX)
24

We adopt a notational convention from the field of rank statistics by using subscripts in parentheses to denote rank (e.g., [491).
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C

+ (7 [-4(1)(Xj1) - (j)(XIO),li,] Pwlx(WJ(j IX) (2.91)
j=2

Since O"[.] and all e(j)(X 10) are non-negative, CFM(XI0) is greatest for a given 6(j)(X 10) if

f(j)(X 1) = 0 Vj > 2 (i.e., if all but the top-ranked output have the same value). In this case

CFM(X I0) =

or [6(o)(X 10)./] PwIx(L.)(1) I X) + o [-4(1)(XlI). '] • (1 - PWIx(Wj)t I X))
(2.92)

= a [0,oV1] + O(x)PW.,x(W, 1) IX) + -•O(x)(W - PiIVlx(WI) IX))
ACFM(X 10o)

where the perturbations (0(X) and -,0(X)) in the value of CFM from its equilibrium value 0T [0, 1/'] -1

due to a non-zero discriminant differential 6(j) (X 10) - are

0(X) a [6,t)(XIe).]- a[o0,',] > 0 (2.93)

-,o(x) a [-,6()(Xl9),]I - a [ov'] _< o

Since 0(X) is non-negative and "O(X) is non-positive ACFM(X 10) is greatest, given specific values of

t9(X) and -0(X), when W(1) = W. (again, by (2.8), W. denotes the class with the largest a posteriori

probability). In this case, the discriminator output corresponding to the largest a posteriori class probability

is larger than all the other outputs. We denote this Bayes-optimal output by y. , and denote the corresponding

output differential by 6..

The specific values of O(X) and -,O(X) that maximize CFM(X 10) in (2.92) - values that we denote

by t9(X)* and -t?(X)* -depend on the specific functional form of CT [6.(X 10-), ']. Clearly they

must satisfy

o(x = - a [6.(Xle) ,I ] - a [0,1']

-,o(x) = a [-b.(XI r), o] - a [0,10, fl

> - e X(W . I X ) U (O(X) " = - ,0(X) = 0) (2.94)

ACFM(x 10)>o >C0,M(x, 10) = 0

w(1) = W., s.t. 6cj)(Xle) 6.(Xle*)
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for ACFM(X 10) in (2.92) to be non-negative. If no A(,)(X 10) = 6.(X10*) > 0 yields O(X)- and

-,O(X)" that satisfy the condition for ACFM(X 10') > 0 in (2.94), then CFM(X 1 6) is maximized when

6 (i (X 16) = 0 Vi s.t. ACFM(X 10) = 0. That is, all the discriminator outputs have the same value,

and the optimal CFM(X 1") is the "equilibrium" CFM(X 106) = 01 [0, 1V'].

Theorem 2.2 The CFM objective fiinction Or [6, v]' must be a bounded signioidal function spanning a

continuum between a linear and a step finction of 6 in order to ensure that differential learning always

generates the Bayes-optinwl classifier.

Proof : Consider two extreme scenarios:

* In the first scenario, X represents C = 2 classes {3 1 , 0 2 }. Thus, the smallest a posteriori class

probability that the more likely class W. can have is Pwix{(W. IX) = ½. Under these circumstances,

(2.94) is satisfied if, by (2.90) and (2.93), 6.(X 10-) > 0 and O [6, V"] = 6. In simple words, if the

CFM objective function is linear in the discriminant differenjial 6, it will generate the Bayes-optimal

classifier for the two-class case.

* In the second (worst-case) scenario, X represents C = oo classes {JW, ...I ,W}. Thus, the

smallest a posteriori class probability that the most likely class W. can have approaches zero

Pwjx(W. I X) -4 0+. Under these circumstances, (2.94) is satisfied if and only if, by (2.90) and

(2.3) LXlO) 0an o"[6t/] r h, 6> 0

(2.93), 6.X 10*) > 0 and U [6,aiI h , > where I and h are real constants,1, _< 0

and I < h. In simple words, the CFM objective function must be a step function of the discriminant

differential 6 in order to generate the Bayes-optimal classifier for the malicious C > I-class case.

For the more general case that falls between these two extremes, CFM must have a bounded sigmoidal shape

in order for (2.94) to hold via (2.90) - (2,93). The lack of a finite lower bound I on oU [6, VJ in particular

prevents the ratio O from being sufficiently large to satisfy (2.94) for all Pwlx(W. I X). The lack

of a finite upper bnund h on or [6, t'] generates classifiers with large discriminant differentials. While this

phenomenon is not fatal to Bayesian discrimination (as the lack of a finite lower bound is), it does prevent

the discriminator from learning those forms of -(X) 5 awt.,.ff,,iai for which 6.(X 10") is a small positive

number. As we will see in chapters 3 and 6, if differential learning via CFM is to be efficient, it must allow

the classifier to learn any and all 9(X 10) E Faye..Differepiial • Thus, CFM must have a bounded sigmoidal

form. I
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Remark: Section 11 of [55] and section 5.4 provide a more intuitive rationale for the sigmoidal form of CFM,

which might be helpful to the reader. We stress that the steepness of the CFM sigmoid need not vary across

training examples; it simply needs to satisfy (2.94) for the worst-case PwIx(W. I X) as approximated in the

statistics of the training sample. Chapter 7 discusses practical approaches to setting i', in order to ensure that

(2.94) is satisfied.

We derive the specific values of i)(X)" and --,)(X)" for the two limiting forms of the CFM objective

function satisfying the constraints of definition 2.11 and appendix D. The derivations assume that I = 0,

h = I, and - I < 6 < I in (2.23) for the sake of simplicity. This constraint on 6 requires that the

discriminator outputs be bounded: Y E Y = [0, I]c. Since the output state of any classifier can be

normalized to [0, l1c, via a simple affine transformation, the following derivations hold for the general

classifier with outputs Y E Y = -c

Linear CFM ( I" = 1): When the confidence parameter V, assumes its maximum value of unity, the

CFM objective function has the following form; the expression is approximately linear for all discriminant

differentials 6 not greater than one, otherwise it assumes the maximum value of unity:

1(6 +1) 6<
orj, = I] . (2.95)

f I, otherwise

The perturbations (0(X) and --,t(X) ) in the value of CFM from its equilibrium value or [0, t/,] -due to

a non-zero discriminant differential 6. (X 10") - are therefore

o r [ 0 , 1 , = 1 ] 12
{2½6.(X 10" 6.(x 10*) < I6.(x) _)

I e, otherwise (2.96)

() - 11.(Xl*), XI10) > -1
2, , rwise

and (2.94) is satisfied if and only if Pwlx(W. IX) > [Thus, for all non-boundary X, the discriminant

differential that maximizes CFM(X 10) is

I S.t. 10(X)" S' -,o(x)" L_ -11, Pwlx(W. X) > ½

60 s.t. 0(X)" = -,O(X)" = 0, otherwise
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= l, Pwix(Wi IX) > (9

0, otherwise

Differential learning via linear CFM therefore exhibits the same pathology that probabilistic learning

via mean absolute error (MAE) does. If C = 2, then a classifier that learns via linear CFM can learn

-,7(X),ae._,-ff"renia1. However, if C > 2, then all discriminator outputs of the linear CFM-g'nerated

classifier will have the same value for all regions on X where Pwlx(W. I X) < i. On such regions the

linear CFM-generated classifier will fail to identify the Bayes-optimal class of X.

Step CFM( 0+ ): When Or6, 0+ = O+ { ---
10, <0

i, [0XlO') > 0

0(X) = (2.99)o , 6.(XlO*) <5 0

*-,o(X) =0

and (2.94) is satisfied for all Pwrx(W. I X). Thus, for all non-boundary X, the discriminant differential

6. need only be positive to maximize CFM(X 10),

6.(XI O) > 0 s.t. o(X)- = 1, -,O(X) = 0, (2.100)

the discriminator outputs all satisfy the constraints of (2.9), and the classifier that learns with the step form

of CFM learns -(X)s,•.,.n,,.

The general CFM (0W < V, < 1 ): When CFM is neither of its limiting forms, differentiating Or [16, ,

with respect to 6 does not lead to a closed-form expression for the specific value of 6. (X 1O6) corresponding

to t7(X)* and -t9(X)* in (2.94).

Nevertheless, the steepness of the CFM objective function's sigmoidal form - regulated by 1P - can

be shown to govern 0(X) and -,0(X) thus: 2

O(X) (2.101)

Indeed, as long as 2
2 Se an dix D, section D.4.
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0 < I' I l ~/ • .43 Pwix (W-)-IX)
o < V < ! n 1/, < 1.43 I-- Pwjx(W. IX) (2.102)

both (2.9) and (2.94) are satisfied, and maximizing CFM ensures that the classifier learns a differential form

of the Bayesian discriminant function:

sign[bi(X1O)] = sign[Awjx(WiJX)] Vi, VX E X
(2.103)

s.t. 9(X 10) =' (X),,,-es rifren,,I E F,,,.,-Differenial

Maximizing CFM is tantamount to establishing a correlation coefficient of unity between the index of the

discriminator's largest output g(1 ) (X 60) and the Bayes-optimal class label W., given by (2.8). In short,

differential learning is discriminative. Chapter 3 proves that for the limiting step form of the CFM objective

function (i.e., iim,_, O [,] ), maximizing CFM is equivalent to minimizing the classifier's error

rate. That proof is central to the proof that differential learning via CFM is asymptotically efficient.

The preceding proofs make no assumptions regarding the functional form of Q(X 10) beyond those

stated at the beginning of this section, nor do they restrict the number of classes C. Barnard proffers a less

general but more elegant proof that differential learning leads to Bayesian discrimination in [5J; it is restricted

to the two-class case in which the mappings gi(X 10) are linear functions of X.

2.4.1 Further Constraints Imposed on V, by the Discriminator

Equation (2.102) specifies an upper bound on %', given the a posteriori probability of the most likely class

(PwIx(W. IX)), which of course depends on X. Since VI' uniquely specifies the minimum discriminant

differential 6.(X 10*) for which CFM is maximized (this value is pit, in appendix D - see figure D.1,

page 329), (2.102) implicitly assumes that the discriminator g(X 10) can generate a discriminant differential

at least this large, in order to satisfy the constraint

must satisfy (2.102) and possibly be reducedfurther, such that

6.(xl0e) _> p n o [&(Xlo*),V,] = i (2.104)

(D.26)

In the event that the discriminator cannot satisfy (2.104) for the tp specified by (2.102), / must be reduced

to the value at which (2.104) is satisfied. In simple terms, the confidence parameter must be reduced so

that the discriminator maximizes CFM for the largest positive discriminant differential 6.(X 10') it can

manage to generate, however small 6.(X I *) might be. Under such conditions, the upper bound on V' is
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determined by the functional properties of (lie discriminator rather than by the a posteriori class probabilities

of the feature vector. An illustration of this phenomenon is given in section 5.3.6.

2.5 Summary

In this chapter we have outlined the general statistical pattern recognition paradigm and defined two

fundamental forms of the Bayesian discriminant function: probabilistic and differential. We have shown that

each of these BDF forms is associated with a learning strategy, and that each learning strategy is, in turn,

associated with a family of objective functions used to train the differentiable supervised classifier. We have

proven that both the probabilistic and differential learning strategies generate the Bayes-optimal classifier,

given sufficient information, computational, and temporal resources.

The probabilistic and differential learning strategies lead to Bayesian discrimination in substantially

different ways. The probabilistic strategy has the distinct advantage of generating classifiers that reflect the a

posteriori class probabilities of the feature vector in the outputs of the discriminator, whereas the differential

strategy merely reflects the identity of the most probable class. There are clear advantages to having the

classifier estimate the a posteriori class probabilities of the feature vector. This fact might lead the reader

to wonder what advantage there is in using differential learning instead of probabilistic learning. In fact,

the advantage lies in the efficiency of the differential learning strategy - that is, its ability to approximate

Bayesian discrimination with the smallest training sample and the least complex classifier necessary for the

task.
Throughout this chapter we have assumed that we have access to unlimited training data, a classifier with

potentially unlimited functional complexity, a search algorithm that assures us of finding the globally optimal

parameterization of our classifier, and infinite time for the algorithm to converge. In reality none of these

advantages exist; we face the challenge of achieving the best discrimination possible, given limited training

data, relatively simple classifier paradigms, limited time for learning, and search algorithms that become

increasingly slow and subject to halting in local optima as classifier complexity increases. If the ultimate

objective is estimating the a posteriori class probabilities of the feature vector, then we are compelled to

use probabilistic learning. This, in turn, compels us to employ a sufficiently complex classifier and obtain

a sufficiently large training sample if we are to have confidence in the classifier's probabilistic estimates.

However, if the ultimate objective is simply to classify patterns, then differential learning is a better strategic

choice, allowing us to achieve the goal of robust pattern classification efficiently. Proofs of this claim are

given in chapters 3 and 6.
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Chapter 3

Differential Learning is Asymptotically
Efficient'

Outline

We present a formal definition of efficiency in the statistical pattern recognition context. By viewing

the classifier's discriminator as an estimator of the Bayesian discriminant function (BDF), we regard the

classifier's error rate2 as an estimator of the Bayes error rate (i.e., the Bayes-optimal classifier's minimum

error rate). On this basis, we use traditional estimation-theoretic notions of bias and variance to define the

efficient classifier and the efficient learning strategy. These definitions, in turn, lead to a quantitative measure

of generalization -'the ability of a classifier to discriminate accurately examples not encountered during

learning. We prove that differential learning is asymptotically efficient and that it requires the classifier with

the least functional complexity necessary for Bayesian discrimination. We prove that probabilistic learning

is inefficient and that it does not guarantee Bayesian discrimination with the minimumncomplexity classifier.

3.1 Introduction

The proofs of chapter 2 rely on favorable but unrealistic assumptions of learnability. Regardless of whether

the Bayes-optimal classifier is simple or complex, we have only limited time and computational resources,

and - perhaps most importantly - limited access to training data. In the face of such restrictions the

efficiencies of the learning strategy and the classifier it generates become important.

In this chapter we employ classical estimation theory (e.g., [22, ch's. 32-34] [134]) to define the

mean-squared discriminant error of a classifier as the expected squared difference between its error rate

and the Bayes error rate (i.e., the minimum possible error rate, yielded by the Bayes-optimal classifier of

definition 2.1). The classifier's mean-squared discriminant error is a measure of its ability to generalize
0

'Sections 3.3 and 3.5 contain detailed versions of proofs first outlined in 153].2We use the term "error rate" as a synonym for probability of error.

53
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well to patterns not encountered during learning. The efficient classifier exhibits minimum mean-squared

discriminant error, thereby guaranteeing the highest probability of good generalization. The efficient learning

strategy is defined as one that guarantees the lowest mean-squared discriminant error allowed by the a

priori choice of "hypothesis class",.3 no matter what that choice is. These definitions are shown to be quite

different from the definitions of functional bias, variance, and mean-squared error typically discussed in the

connectionist, machine learning, and statistical pattern recognition literature.

We show that the differentiable supervised classifier performs general Bayesian learning (e.g., [29, sec.

3.5]) in which its discriminator's parameterization is transformed to a post-learning state from a "tabula

rasa" state prior to learning. Viewcd cv.r all possible initial parameterizations, learning transforms the

classifier's 4 a priori parameter probability density function (pdf to its posterior parameter pdf. As a result,

we show that the classifier's expected ability to approximate Bayesian discrimination depends entirely on the

posterior parameter pdf, which in turn and in part depends on the learning strategy employed.

We prove that differential learning is asymptotically efficient (i.e., efficient for asymptotically large

training sample sizes) and that it requires the classifier with the least functional complexity necessary

for Bayesian discrimination; we also prove that probabilistic learning is inefficient and that it does not

guarantee Bayesian discrimination with the minimum-complexity classifier. We therefore argue in favor of

differential learning and against probabilistic learning (for all but a few special cases) when information and

computational resources are limited.

3.2 Discriminant Error, the Efficient Classifier, and the Efficient Learn-
ing Strategy 0

Consider the classifier's discriminator as an estimator of the Bayesian discriminant function - or, more

precisely, consider the classifier's error rate as an estimator of the Bayes error rate (definition 3.2).5 From

this perspective, the classifier's discriminant efficiency can be assessed in terms of discriminant bias and

variance expressions that reflect how well and how consistently the classifier approximates the Bayes error 0

rate for the pattern recognition task. We use the notation P, (.) to denote error rate, and remind the reader that

'F(O(X 10)) and D (X 10) , which are given in (2.6) and (2.7), represent the class label that the classifier

with parameterization 0 assigns to X. Thus, the probability that the classifier will misclassify X is
37The term hypothesis class aries in PAC learning theory. In the statistical pattern recognition context it describes the set of all

possible discriminators Q(X 1O), given our choice of classifier psardigm and parameter space. The classifier paradigm is detenained
by the functional basis of its discrimitnant functions (e.g., the logistic functional basis of multi-layer percepitin and the Gaussian basis
of Gaussian radial basis functions). The set of all C-output multi-layer perceptrons with no mom than 500 total connections is therefore
an exaample of a hypothesis class. Pleasem definition 3.5.

4The classifier's and discriminator's parameterizations are one and the same.
SPukunaigt takes this perspective in (40, ch. 71, although he considers the estimated error rate of the classifier, rather tham the owe

error rate to which we refer (see definition 3.1). We use the term "error rate" when refemng to the classifier's true probability of S
error, and "estimated error rate" when referring to any empirical estimate of the classifier's true probability of error. Of course, the
classifier's error rate is an abstraction - a number that we cannot know with certainty for any real classifier. Nevertheless, the quantity
is central to the arguments of this chapter.
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P,(C(x o)) i - PvwIx(D (Xt0) 1X)
(3.1)

I I - PwIx(r(gN(XIo))IX)

Definition 3.1 The Classifier's Error Rate (or Probability of Error): The classifier's error rate, or

probability of error, is the expected value of its probability of misclassifi.ing X. We denote this expectation

for the classifier with parameterization 0 by P, (C 10), where

P, (9 0) ' Ex [P ((x 10))] = / Pe (C(X 10)) p.(X) dX (3.2)

Remark: Note that this error rate is the true error rate of the classifier, not an estimate. As such, it represents

* a theoretical number; knowing the number requires knowledge of the feature vector's class-conditional pdfs

and its class prior probabilities. Since we do not know these (if we did, we could deterministically create the

Bayes-optimal classifier), we cannot know P. (C I 0). However, this error rate is essential to our theoretical

argurents, so we ask the reader to imagine that we pass our classifier with the discriminator C(X 10) io an

* oracle. The oracle knows the probabilistic nature of the feature vector X and can deterministically compute

for us the value of P, (C 10), given any and all C(X 10).

Definition 3.2 The Bayes Error Rate: Recall from section 2.2.2 that .(X)•.1 s denotes the Bayesian

discriminant finction of X in any of its possible forms. The Bayes error rate, which we denote by

PF (-,..,), is the error rate of the Bayes-optimal classifier (see definition 2. 1). By definition, this is the

lowest error rate possible for a classifier of X:

P, (J'&.,.,) ' Ex [P,L(.(X)so.)] = /x Pe (Y'(X)&o.,) p.,(X) dX (3.3)

where

P, (Y(X)a.,,) = I - Pl,)(1r (_F(x).,,) IX) (3.4)

3.2.1 Learning and Expectation

A differentiable supervised classifier learns by transforming its initial parameterization (which we denote by

Oo ) into its post-learning (or posterior) parameterization 0. As described in section 2.2.3, this transformation

0 involves adjusting the differentiable supervised classifier's parameters via an iterative search aimed at

optimizing an objective function; the learning strategy describes this process.

0
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Definition 3.3 The Learning Strategy A : Ultimately, the learning strategy A reduces to a description

of the mapping from the classifier's initial parameterization 00 to its posterior parameterization 0, given

the training sample S' (see definition 3.4) and the hypothesis class G(e) (see definition 3.5):

A: 0• -+ 0
(3.5)

o = A(oolSn,G(e))

The classifier's initial parameterization 0o is generated according to the prior pdf po(Oo) on parameter

space e. The posterior parameterization 0 is stochastic because both Oo and S" are; thus. A can also

be viewed as an "algorithm "for general Bayesian learning (e.g., 129, sec. 3.51).

Definition 3.4 The Training Sample S": The training sample S5" is the set of n example/class label

pairs {(X',W') ... (Xn, W")}, generated according to the (unknown)joint pdf PII -K,.,(SR)•

Note that if the training example pairs are independent and identically distributed (lid) the joint pdf of the

training sample can be expressedas l P,, w(X', ),VW).

Definition 3.5 The Hypothesis Class G(e): In the statistical pattern recognition context, the

hypothesis class G(8) is the set of all possible discriminators 9(X 60):

G(e) o{(X10) : 6 Ee}
(3.6)

= {{gI(XlO), ...- gc(XIO)l : 6E e),

where 9 (X I0) and gi(X I0) satisfy the conditions of (2.4) and (2.5) and representfunctions in a particular

basis or combination of bases G (e.g., polynomial basis, Gaussian radial basis, logistic functional basis,

etc.). We denote the set of all hypothesis classes by %, such that G(19) c

Example 3.1 Consider the C = 3-class pattern recognition task involving the scalar feature x. The

classifier with the discriminator Q(xj1) = 19 )-9 2 4x10),gI(XI1) is used. Each discriminant

function gI(xI 9) E Q(x 10) is a IOth-order real polynomial function of x:

10

gi(xIO) =1 Oi,k • (x)*; i = 1,2,3 (3.7)
k=O
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Thus, the classifier has a total of 33 parameters (a different set of I I for each of the 3 discriminant functions). 6

We denote all of these parameters by 0, and parameter space is the 33-dimensional space of real numbers

(i.e., 0 E e = R-1 ). The hypothesis class G(e) in this example is therefore the set of all discriminators

having 3 discriminant functions that are at most 10th-order real polynomials of x. % in this example is the

set of all discriminators having 3 real-valued disctiminant functions of the scalar x - an infinitely larger

set of possibilities than G(e).

In assessing how well the classifier/learning strategy will generalize, we must consider not just one

error rate P, (( 10) corresponding to one learning trial involving a single training sample of size n and a

single initial parameterization 0o; we must consider the expected error rate over all such trials. From this

perspective and (3.5), the posterior parameterization 0 depends on the classifier's initial parameterization

0o, the training sample S", the classifier's hypothesis class G(e), and the learning strategy A. As a result,

we can express the expected vilue of the classifier's error rate P, (C 10) over all possible training samples

of size n and all possible initial parameterizations 00. We use the notation E. I ' to denote the expectation

operator taken over the space on which z is defined, and E, ...., [ -I to denote the expectation operator

taken over the joint space on which z, ... ( are defined. The expected value of the classifier's error rate

raised to the vth power is therefore

E.,OeJ(P.(gIO))"] (3.8)

/XJ (l = A(OoIS',G(e)) pe(Oo) dOo x,w,.....(S)dS"

(3.2)

if the training examples are not fid, or

ES., 0 [(PI (0Ie))"'

* I.xfZ I"x ,,QIlf P. ( 10o= AAoIS", G(e)))

6We use the notation g1(X 10) for the Rh diicrimimmt function of the general feature vector X throughout this text. It is somewhat
misleading because it implies that each discriminant function makes use of all the classifer's parameters. Although this may be true, it is
no(t nece-anly so; in the cue of the present example, none of the discrimimnt functions shares a parameter with any other discriminant
function. In other cases (e.g.. multi-layer perceptnrn classifiers) different discminnant functions do share common parameters. We leave
these details implicit in the interest of simplified notation.
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if the training examples are jid.

3.2.2 Discriminant Error and the Efficient Classifier

Armed with the expressions in (3.8) - (3.9), we can assess the classifier's discrintinant error - the degree

to which its error rate exceeds the minimum Bayes error rate. We can characterize the expectation of

this discriminant error over all learning trials in terms of the traditional notions of an estimator's bias and

variance. These metrics low us to assess how well and how consistently the classifier approximates the0

Bayes-optimal classifier.

Definition 3.6 Discriminant error: We define the discrimtinant error as the difference betwieen the

classifier's error rate and the Bayes error rate:

DError [g 10] P, (g 10) - P. ora~s (3.10)

Remark: Since the Bayes; error rate is the minimum achievable, the discriminant error is always non-negative:

0 < DError [9IG 10 :5 - P,: 1 (3.11)

Definition 3.7 Discriminant bias: We define the discriminant bias as the expected value of the

classifier's discriminant error, using the notation DBias [g in, G(e), A] to signify that discriminant bias0

(as the expressions for discriminant variance and mean-squared discriminant error that follow) ultimately

depends on the training sample size n, the hypothesis class G(8) , and the learning strategy7 A. This

dependence is made clear by (3.S) - (3.9):

DBias [gIn,G(e),AI E~,6 f.DError[Q lOj]

ESa, 1. P.(QI)I P,(~n~s (3.12)

Remark: Since, by (3.11), the discriminant error is always non-negative, the expectation of this error (i.e.,

the discriminant bias) is always non-negative:

0 <DeasQ~nG(),J •I P Y.~) :5 1 (3.13)0
7Thec dependence on the probabilistic nature of X is left implicit in order to simplify notation.
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Definition 3.8 Discriminant variance: We define the discriminant variance as the second central

moment of the classifier's error rate:

DVar [gl1n, G(e), AJ ES.,.,[(P,(Q 0) - E,5., 0, Pe( 0)I)]

=Es.,0.(Pe(C 0))'] - (E,.,0,,[Pe (g10)1) 2 (3.14)

Definition 3.9 Mean-squared discriminant error (MSDE): We define the mean-squared discrindinant

error (MSDE) as the expected value of the squared discrintinant error.8

MSDE[jgIn, G(O),A] = E•E,,O [(DError[j O])2]

= Es., [(P. (010) - P,2]

= (DBias[gln, G(e),A]) 2 + DVar[Q1n, G(e),A] (3.'5)

Remark: We view the mean-squared discriminant error as a measure of the classifier's ability to generalize

well: the lower the MSDE, the better the classifier generalizes. The quantity (DBias [g in, G(e), A] )2

measures how well, on average, the classifier discriminates in comparison to the Bayes-optimal classifier;

DVar [9 in, G(e), A] ) measures how consistently the classifier discriminates over multiple independent

learning trials.

Definition 3.10 The asymptotically unbiased classifier: The classifier is an asymptotically unbiased

estimator of the Bayes-optimal classifier if its discriminant bias is zero for asymptotically large training

sample sizes:

lim DBias [f1n,G(e),A] = 0 (3.16)
M-.-IOO

R 0

Definition 3.11 The consistent dassifler: The classifier is a consistent estimator of the Bayes-optimal

classifier if its error rate P, (9 10) converges in probability to the Bayes error rate plus some non-negative

constant (i as the training sample size grows large:
' Nowe dri MSDE- the mean-quaid difference between the classifier's erro rate and the Sayes enor rate - is not the saine thing

as MSE -the nean-squaredfuncicnal error (described in chapter 2 and section 3.4) between the classifier's discrinminan functions
and the strictly probsbilistic form of the BDF.
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lim P {P,(Q9e 10 ~ B) -f, < 1 ; > 0 (3.17)9

DError[C 11]

if P. (9 I O) converges in mean-square to the Bayes error rate plus some non-negative constant /3

lir E.' O P. (P O) - P, (.Baw.r) - 3 = 0 (3.18)

DError [! 1]

(3.17) is satisfied,9 and the classifier is consistent. Note that (3.18) holds if

,im DError[ 0 = A(oI S",G(e))] = /3 V{S",Go} (3.19)

Definition 3.12 The efficient classifier:

Let kL denote the set of all possible learning strategies and recall that % denotes the set of all hypothesis

classes. The classifier DV(X) = r (9* (X19* = A.(OoIS". G(e)))) generated from the hypothesis

class G(6)* E Q by the learning strategy A. is efficient for a given training sample size n if and

only if, given afeature vector X with specific class-conditional pdfs {Piw (XIJ!). _. Px.1W(X Ujc)}

and class priorprobabilities {PW(Wi), ... Pw(Wc)}, there exists no other classifier in % that exhibits

lower MSDE:

v-(X) = r(" (x Ir = A.(Oo ISG(e)'))) isefficient iff

MSDE [C" In, G(e) A.] _< MSDE [C jn, G(e), A] (3.20)

VG(e) E %, VA E• I; W (X 0*) E G(O),. O(X 1) E G(e)

Remark: The efficient classifier D*(X) generalizes best because it exhibits the minimum MSDE. By this

definition, the efficient classifier always exists, since there is always some classifier that exhibits lower

9Converaence in mean-squme aurnsfes convergence in probability: see, for example. [45. pp. 148-1491.
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25% MSDE = DBias 2  + DVar

20% high MSDE

¢b 15% I
15 h I medium MSDES~high DVar

10% 1% low DVarJ

high DBias high DBias low MSDE

P, %' low DVarI f low DBias

Figure 3.1: The discriminant bias and discriminan! variance of thrce different classifier paradigms, as
determined by an oracle over an infinite number of independent learning trials. The training sample size it
is the same finite number for each trial, so each classifier's error rate varies across trials. Left: this classifier
has high discriminant bias, so on average its error rate is significantly higher than the Bayes error rate
P, - Additionally, its high discriminant variance indicates that its error rate fluctuates substantially
across independent trials. As a result, its mean-squared discriminant error (MSDE) is high. Middle: this
classifier has high discriminant bias, so on average its error rate is significantly higher than the Bayes error
rate. However, its low discriminant variance indicates that it is a more consistent classifier than the one on
the left; as a result, its MSDE is lower and it is preferable to the classifier on the left. Right: this classifier has
low discriminant bias and low discriminant variance. As a result it yields a consistently good approximation
to the Bayes error rate. Its MSDE is therefore low.

MSDE than any other classifier. Readers familiar with the classical definition of the efficient estimator will

note that our definition, like that of [39, ch. 5], is less restrictive than that of [ 107] [22, ch. 321.10

Example 3.2 For those not familiar with the notion of an efficient estimator, consider the error rates of three

different classifiers that have learned to perform the same pattern recognition task. Each classifier therefore

represents a different estimator of the Bayes-optimal classifier. This is a thought experiment in which we

imagine that the classifiers learn repeatedly over an infinite number of trials. In each trial all three classifiers

learn the same training sample of size n (n is finite), and are subsequently tested by the oracle. The training

sample for each trial is drawn independent of all other training samples. At the end of each trial, the error rate

for each classifier is determined by the oracle and recorded; the results for all trials are compiled. Figure 3.1

summarizes the results for each of the three classifiers. Because the training sample size n is the same

finite number for each trial, each classifier's posterior parameterization (and, as a result, its error rate) varies

from trial to trial. This variance is depicted by the bars of the whisker plots in figure 3. 1. Specifically, the

discriminant variance is proportional to the square of the distance between the upper and lower bounds in

"'The classical definition of an efficient estimator requires that it be unbiased and that its variance match the Cramer-Rao bound;
by this mot rigorous definition, the efficient estimtmr does not always exist. While the Cramer-Rao bound is clealy defined for
the parameter estimation context, it is unclear whether there is an analogous bound in the pattern recognition context. Please refer to
section 3.6 for more on this subject.
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each whisker plot. The discriminant bias of each classifier is equal to the distance between the mean value

of its whisker plot (denoted by the dot) and the horizontal line denoting the Bayes error rate Pe (-F',.es.).

The classifier on the left is a poor estimator of the Bayes-optimal classifier because it exhibits both high

discriminant bias and high discriminant variance. This means that I) on average the classifier's error rate

is much greater than the Bayes error rate (high discriminant bias), and 2) the classifier's error rate varies

significantly across trials (high discriminant variance). As a result, the classifier exhibits high MSDE. The

classifier in the middle is a somewhat better estimator of the Bayes-optimal classifier because, although it

exhibits the same high discriminant bias as its counterpart.on the left, its error rate is more consistent across

trials. As a result, it exhibits lower MSDE. The classifier on the right is a good estimator of the Bayes-optimal

classifier because it exhibits low discriminant bias and its error rate is consistent across trials. As a result it
exhibits low MSDE. Whether or not this classifier is efficient depends on whether it satisfies the constraints

of definition 3.12.

Measuring the goodness of an estimator by its mean-squared error has a long history in the estimation

theory literature, dating back to Gauss." R. A. Fisher, H. Cramer, and C. R. Rao played central roles

in further defining the "efficient" estimator as one that exhibits minimum mean-squared error (see, for

example, [107, 22, 134, 39]). In fact, it is this body of literature that motivates us to view the classifier's

error rate as an estimator of the Bayes error rate. The preceding definitions of discriminant bias, discriminant

variance, mean-squared discriminant error, and the efficient classifier follow immediately from such a view.

Again, we remind the reader that these definitions are quite different from tne definitions of fi~nctional bias,

variance, and mean-squared error typically discussed in the connectionist, .,,achine learning, and statistical

pattern recognition literature. 0

3.2.3 Efficient Learning

Despite the similarities between an efficient estimator and an efficient classifier, there are notable differences.

In the classical estimation context, we have a unique parametric model, and the efficient parameter estimator 0
- if it exists - is uniquely specified. In the pattern recognition context, there are an infinite number of

hypothesis classes with which to approximate the Bayes-optimal classifier of X. Each hypothesis class

constitutes a different parametric model, and some choices will be better than others in terms of the minimum

MSDE they can attain for a given training sample size of the random feature vector. Recognizing this, we

must acknowledge that our choice of hypothesis class G(O) might not contain the efficient classifier of

definition 3.12. In such a case, we would like the classifier thai our learning strategy generates to exhibit the

lowest MSDE allowed by the choice of G(e). This implies a notion of relative efficiency (e.g., [9 ]), which

depends in part on whether or not the hypothesis class constitutes a proper parametric model of the feature 0

"11C. R. Rao traces the notion of the trinimum mean-squared error estimator to a paper that Gauss presented to the Royal Society of
Gottingen in 1809 (109. pg. 1231,

0
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vector X.

Definition 3.13 The proper parametric model G((e, X)pr(per: If the C-class random vector X has

a posteriori class probabilities that are described by the parametric equations

PwI.(WiIX) = fi(X1O"), i = I, ... C (3.21)

and if the hypothesis class G(8) describes the set of all discriminators Q (X j0) for which

gi(X10) = fi(X 1), i = I. C (3.22)

such that

gi(XIO) = PwVi,(W;IX) Vi if 0 = 60, (3.23)

then G(e) is the properparametric model of X, which we denote by G(e, X)prtpr. The properparametric

model of X exists if and only if the a posteriori class probabilities (and the class conditional pdfs) of X can

be described in parametric form.

Remark: If G(e, X) pe, exists, it is unique, as there is one and only one exact set of parametric expressions

for thea posteriori class probabilities of X. This uniqueness assertion rests on the difference between

functional identity and functional equivalence. The proper parametric model's discriminant functions are, for

the correct choice of parameters 0*, identical to the a posteriori class probabilities of X, by (3.23). Granted,

Bayes rule allo' /s the a posteriot, class probabilities of X to be expressed in terms of its class-conditional

pdfs (i.e., its likelihoodfunctions) and class prior probabilities via (2.3). This representation is also unique, as

there is one and only one exact set of expressions for the class-conditional pdfs and class prior probabilities

of X. Thus, if G(9,X)p,,,,, exists, it can be expressed in one of two forms: directly, as a "partially

parametric" 191, pg. 255] form equating to the a posteriori class probabilities of X, or indirectly, as a

fidly parametric form equating to the products of class-conditional pdfs and class prior probabilities. Many

readers will recognire the fully parametric form of G(Q , X ),,,, as the foundation of maximum-likelihood

parameter estimation.

Definition 3.14 An improper parametric model: An hypothesis class that is not the proper parametric

model of X, as defined above, isan improper parametric model of X (i.e., G(e) # G(19,

Remark: Readers familiar with parametric discrimination (e.g., 129, 40, 91 ) will note that proper parametric

models are what White terms "correctly specified" parametric models 11401; improper parametric models

are what White terms "misspecified" parametric models. So called "non-parametric" models for statistical

pattern recognition are named thus because the models' discriminant functions are not exact expressions of
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the feature vector's class-conditional pdfs or a posteriori class probabilities. The nomenclature is unfortunate,

because it incorrectly implies that such models have no parameters. We take the view that all models are

parametric, so all differentiable "non-parametric" models that are trained in supervised fashion are, by our

definition, improper parametric models.

There is at most one proper parametric model (which can be expressed either fully or partially) versus

an infinitely large set of improper parametric models f. .: given feature vector X. Thus, we are infinitely

more likely to choose an improper parametric model of X absent any information or analysis suggesting the
proper parametric model. Kolmogorov's theorem [771 can be interpreted as proving that without strong a

priori information, G(e, X)pmpr - if it exists at all - can be identified only by exhaustive hypothesis

testing of all models in %. In practical terms, we might test a few hypothesis classes to see if any of

them constitutes G(9, X)pp,,, with high likelihood. If one of the candidate G(e)s does, then a specific

form of probabilistic learning, tailored to G(0, X)p,,,,, might very well generate the efficient classifier

D'(X) of definition 3.12 (see section 3.6 and chapter 4). If none of the candidates prove likely to constitute

G(9, X)q,, we will want to achieve the best generalization allowed by our choice of improper parametric

model, whatever that choice ultimately is. This desire raises the issue of the relatively efficient classifier.

Definition 3.15 The relatively efficient classifier:

The classifier D*(X) = r (g (x I* = A.(O0 ISR. G(e)))) generatedfrom the hypothesis class G(0)

by the learning strategy A* is relatively efficient for a given training sample size n if and only if. given

a feature vector X with specific class-conditional pdfs {Piiiv(XIWo) ... Pxiw(XIWc)} and class

prior probabilities {Pw(W ). Pw(Wc) }. there exists no other classifier in G(E) that exhibits lower

MSDE:

D*(X) = r ( (X 19* = A.(G0 I$S,G(Q)))) is relatively efficient iff

V E[9jInG(e),A*j < MSDE([1n,G(e),A] (3.24)

VG(e) E %, VA E Ik; C(Xle*) E G(0), (xl1) E G(0)

Remark: The relatively efficient classifier D*(X) exhibits the lowest MSDE allowed by the choice

of hypothesis class. Whether or not it is the efficient classifier of definition 3.12 (i.e.. whether or

"not D*(X) = '(X)) depends upon the choice of hypothesis class G(O). If G(0) = G(O)'
then V*(X) = W(X); otherwise, D*(X) is the closest approximation to P*(X) (as measured by

MSDE [I I n. G(e). A.] ) allowed by G(e).

0
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Definition 3.16 The efficient learning strategy: The learning strategy A, is efficient if and only

if given a feature vector X with arbitrary class-conditional pdfs { PI w (X I 0W, ) ..... /9,1w (X I WC) }
and class prior probabilities {PiV(W, ). Piv(Wc)}, any training sample size it, and any proper

or improper parametric model G(19) E *, A. always generates the relatively efficient classifier of

definition 3.15.

Remark: The efficient learning strategy always guarantees the lowest MSDE allowed by the training sample

size and the hypothesis class; the guarantee holds for any and all training sample sizes. Frankly, we doubt

that this kind of universally efficient learning strategy exists, for the simple reason that we cannot conceive

of one single learning strategy that can produce the relatively efficient classifier for both improperand proper

parametric models of the feature vector (see section 3.6). Regardless of whether or not the efficient learning

strategy exists, a less stringent form of asymptotically efficient learning certainly does exist.

0
Definition 3.17 The asymptotically efficient learning strategy: The learning strategy A,. is

asymptotically efficient if and only if, given a feature vector X with arbitrary class-conditional pdfs

{ lPuw(X 1I WI) ..... P lw(X I Wc)} and classpriorprobabilities {Pw(W I ) ..... PW(Wc)}, an "asymp-

.totically large" training sample size n, and any proper or improper parametric model G(0) E %,
there exists no other learning strategy that produces a classifier from G(0) with lower MSDE:

A,. is asymptotically efficient iff

lim,_ MSDE[gji,G(e),.-.] -< MSDE [g In. G(e). A]
(3.25)

V ({p.,w(Xjuj,) .... p.jiw(Xjujc)}j{wW, .. Ptv(Wc-)}) ,VG(e) E

vA E I (; G(x0'* = A,. (OoI S",G(e))) E G(e),g(xI1) E G(e)
0

Remark: There is only one difference between the efficient learning strategy and the asymptotically efficient

learning strategy: efficient learning is guaranteed to generated the relatively efficient classifier for large

0 and small training sample sizes; asymptotically efficient learning is guaranteed to generated the relatively

efficient classifier for large training sample sizes only.

Characterizing a learning strategy as asymptotically efficient is a strong statement for two reasons:

SFirst: Asymptotically efficient learning is guaranteed to generate the relatively efficient classifier.

given any hypothesis class, as long as the training sample size is sufficiently large. Although this

might not seem to be a strong statement in absolute terms, it does indicate that asymptotically efficient
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learning is preferable to inefficient learning. That is, a learning strategy that always generates the

relatively efficient classifier for large training sample sizes is preferable to any alternative strategy that

usually fails to generate the relatively efficient classifier for an), training sample size. The relevance of

this obvious statement to current machine learning strategies for statistical pattern recognition becomes

clear in section 3.4, wherein we prove that probabilistic learnitig is inefficient.

9 Second: Asymptotically efficient learning generates the relatively efficient classifier for small as well

as large training sample sizes, given most choices of hypothesis class. It fails to generate the relatively

efficient classifier for small n only when the hypothesis class is a good approximation of the proper

parametric model of X (i.e., when G(O) ý- G(O,X)p,,,r -see section 3.6, chapter 4, and

section 8.5).

3.3 Differential Learning is Asymptotically Efficient

Recall that S" denotes the training sample of size n. By (2.86), the sample average value of the CFM

objective function converges to its expected value over all feature vectors as the training sample size grows

large: 12

lim C-M (S"I0) = Ex [CFM(X1)]
P--tx.

= / U [i,(XI0), v]• PiIVX(WiIX) Px(X) dX (3.26)
•/ i=1

CFM(X I 0)

Recall from definition 2.11 and (2.26) that the CFM objective function or [6,(XI0),. 'J becomes a step

function as its confidence parameter ;/I goes to zero:

J 0, &,(Xle) < 0

lim or 16,(X 1),VI] = (3.27)V¢'-• I , Ji(x I#) > 0

Finally, recall from (2.87) - (2.90) that a positive discrimihant differential 6i(X 16) indicates that the

corresponding ith discriminator output is greater than all other outputs ( 6i(X I1) = 6(1)(X 18) >

0 iff g(X 10) > gi(Xl1) Vj # i ) such that the class label assigned to X is r(I(X10)) = Wi = wU().

Given (3.27), CFM(X 10) in (3.26) has only one non-zero term, corresponding toclass F(9(X 1)) = Wt,).

'2 See appendix B
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Thus, CFM(X 10) converges to the a posteriori probability of class U)(1) (i.e., the class corresponding to

the discriminator's largest output):

lim CFM(XIO) = PwlIx(W(i) IX)
n-4 -K.

010

= PwVjx(F(9(X Io) IX)

= I - Pe (Q(XIO)) (3.28)

* (3.1)

As a result, the expected value of CFM(X 10) converges to one minus classifier's error rate:

lir EX [CFM(X10)] = I- [ P, (Q(X10)) Px(X)dX (3.29)
0 I--+0+ i)

(3.2)

By (3.2) and (3.10),

lim EX [CFM(XI1)] = - P, ( 0t8)

I - P, (- es,) - DError [g e] (3.30)

constant

Equations (3.26) - (3.30) prove that the CFM objective function (in its step functional limiting form)

converges to a constant minus the classifier's discriminant error, given an asymptotically large training

sample size. By this result, we state the following theorem:

Theorem 3.1 In the limit that the CFM objective finction becomes a step finction, the associated differential

learning strategy AA described in chapter 2 is asymptotically efficient. The asymptotic efficiency of

differential learning is independent of both the probabilistic nature of the feature vector and the hypothesis

class from which the classifier is generated.

Assumption 3.1 We assume that A& employs a search algorithm (i.e., a numerical optimization proceoare)

that is guaranteed to find the posterior parameters 8A that maximize the sample-average value of the

CFM objective function. given X and the hypothesis class G(8), regardless of the discriminator's initial

parameterization 00. That is, we assume that the search algorithm will not halt in a local maximum.
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Proof : The differential learning strategy AI maximizes the CFM objective function for the training

sample S" ; the maximum is found with respect to the classifier's parameters, as described by definitions

2.8 and 2.10. We use 0 A = AA(oI S", G(9)) to denote the posterior parameterization of the classifier

generated by the differential learning strategy, given the step functional form of CFM when 0i - 01 , the

training sample S", the initial parameterization Oo, and the hypothesis class G(e). By (3.26) - (3.30),

maximizing the step form of CFM is equivalent to maximizing a constant minus the classifier's discriminant

error as the training sample size nt grows large. As a result,

lim I - P, (.,,) - DError [ O6 A = Aa (OoISnG(9))]

> I - P, (.a,.,e) - DErTor [I0] VO E e (3.31)

By (3.11), we know that DError [J e] is always non-negative, so (3.31) leads to'"

m DEn'orfIOA = AAGoISG(19))J = m-in (DError[g 10]) ; ti > 0 (3.32)

or

lm-"In' r OC.R-OC Vrro .Qe = Az,(eOJS".G(e))])t !< (DError[! 9J])" VO E (9; t; > 0 (3.33)

That is, maximizing the step form of CFM is equivalent to minimizing the classifier's discriminant error

for asymptotically large training sample sizes. Clearly, if we minimize the classifier's discriminant error

for each trial involving an independently drawn training sample S" and an independently drawn initial

parameterization O0, then we minimize the expected value of the classifier's discriminant error over all such

trials. By (3.8) - (3.9) and (3.33),

lir ES.,, 0(DError[!90" = Aa(OoIS",G(e))])']

< ES,,e.[(DErTor[IO = A(OoIS",G(e))]) t] VA k IL; v > 0 (3.34)

It follow* immediately from definitions 3.7 and 3.9 that maximizing the step form of CFM minimizes the

classifier's discriminant bias and MSDE for asymptotically large training sample sizes:

"Thl1e followinwg equations hold for all training sample/initial parametization coninations (i.e.. {S".n) owing to the

converce popeit of the training sample (wee appendix B) and the assumption of theorem 3.1.
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lim DBias[CIn, G(e),AAJ] < DBias[CIn,,G(9),A] VA E k (3.35)

lim MSDE[QIn,G(e),AA,, < MSDE[QIn,G(e),A] VA E 1L (3.36)

Since (3.36) holds regardless of the choice of hypothesis class G(e) or the probabilistic nature of X, it is

equivalent to (3.25) in definition 3.17. Thus, differential learning via the CFM objective function ( /, - 0+)

is asymptotically efficient. I

Remark: The preceding proof is significant because it guarantees that differential learning generates

the relatively efficient classifier of definition 3.15 -- regardless of G(e) - as long as the training

sample size is sufficiently large. At present, we know of no other learning strategy that provides this

guarantee. We emphasize that establishing the asymptotic efficiency of differential learning does not

refute the existence of some other asymptotically efficient learning strategy Ao with better convergence

properties:' 4 MSDE[CIn, G(e),Ao] < MSDE[C n, G(8),AAJ Vn < oo. This is the problem

with asymptotically efficient estimators in general: we know they do good things with large sample sizes,

but we can't be sure that there isn't another asymptotically efficient estimator that does even better for small

sample sizes.

3.3.1 Differential Learning Generates Consistent Classifiers

When v = I in (3.32)

lira DError[9 10 = A&A(0018",G(e))] = min DError[ 10]), (3.37)

which, owing to the convergence properties of the training sample (see appendix B) and the assumption

of theorem 3. 1, holds for each and every combination of training sample S" and initial parameterization

Go. As a result, (3.37) is equivalent to (3.19), and differential learning generates co..sistent classifiers, by
definition 3.11 (page 59).

14 WC tend the reader tu r. asMpotically efficient learning stndegy mus generate the relatively efficient clausifter for large
training sample sires, reprdless of the choice of hypoteis elrm. To be sure, them are probebilistic learning strategies that exhibit
better convergence prope.ies thdn differential learning does w G(O) L- G(o), but tese leaming strategies provably fail to
generte the relatively efficiem clusifier for the rbitrarily cPioen G(O). This issue is the subject of aections 3.4 and 3.6.
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Equation (3.37) also guarantees that the discriminant variance of the differentially generated classifier

converges to zero for asymptotically large training sample sizes. As mentioned in the preceding section, the
guarantee does not set a bound on the rate of this convergence; it simply states that I) the convergence takes

place, and 2) beyond some lower-bound value of n, the differentially-generated classifier's MSDE is the

lowest allowed by the choice of hypothesis class.

The value of this lower-bound on n is determined by the probabilistic nature of X, over which the

learning machine has no control, as well as the choice of hypothesis class G(e), over which the learning

machine (or the person controlling it) does have control. Generally we have access to training sample

sizes that are orders of magnitude too small to ensure convergence of the training sample statistics to their 0
underlying class-conditional probability densities and a posteriori class probabilities, so (3.30) fails to hold

as an identity (rather it holds only as an approximation), and the classifier's ability to generalize (i.e., its

MSDE) is quite sensitive to the complexity of G(61).

In order to prove our claim that differential learning is efficient (not just asymptotically efficient) for most

choices of hypothesis class, we prove its minimum-complexity requirements in section 3.5 and link these to

Vapnik and Chervonenkis's seminal work relating model (i.e., hypothesis class) complexity to generalization

1137 11136, ch. 61.

3.3.2 A Word Regarding "Agnostic" Learning

In concluding this section, we remind the reader that our definition of asymptotically efficient learning is

unconditional, in that it places no restriction on the probabilistic nature of the feature vector or the hypothesis

class from which the classifier is generated. Differential learning is an asymptotically efficient agnostic

learning strategy because it generates the relatively efficient classifier for any and all feature vector/hypothesis

class combinations, given a sufficiently large training sample size. 7The term, "efficient agnostic learning,"

has been coined recently by Kearns, Schapire, and Sellie [73, 721. Although our definitions of efficient

learning are more universal than theirs (in that definitions 3.16 and 3.17 pertain to not just one, but amost

all and all (respectively) feature vector/hypothesis class combinations - cf. [73, sec. 2.4]),15 it is clear that

the two are motivated by a similar philosophical perspective. Furthermore, we acknowledge and share their

notion of an agnostic learning strategy as one that places the fewest constraints on the form of the classifier's

discriminant functions. Since differential learning, in the limit that the CFM objective function becomes

a step function, requires the least restrictive conditions necessary for Bayesian discrimination (stated in

definition 2.2), we cannot conceive of a more agnostic learning strategy.

"isMoreover, our definition of efficient learning has its basis in classical estimation theory, whereas Kearns and Shapire's definition has
its basis in theoretical conqputer science. By their definition, learning is efficient if it exhibits polynomial time and sample complexity.
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0 3.4 Discriminant Error Versus Functional Error, and the Inefficiency
of Probabilistic Learning

Readers familiar with the connectionist and machine learning literature (e.g., (136, 10. 59, 4 I, 1461) will note

that our definition of discrimninant error is very different from the definitions of functional error typically

discussed. Recall that section 2.3 describes the properties of many functional error measures. By the proofs

of that section, all of these error measures are associated with the probabilistic learning strategy, which for

asymptotically large training sample sizes seeks to minimize some measure of functional error between each

discriminator output gi(X 10) and its corresponding a posteriori probability Pwlx(Wi I X).

In the preceding section, taking the expectation of the step form of the CFM objective function over

all feature vectors showed that CFM constitutes an asymptotically unbiased estimator of one minus the

classifier's error rate. Thus, learning by maximizing CFM proved to be asymptotically efficient. We know of

no error measure that constitutes an unbiased estimator of the arbitrary differentiable supervised classifier's

error rate for the general C-class pattern recognition task; as a result, we know of no probabilistic learning

strategy that is asymptotically efficient according to definition 3.17.

Consider the expected value of mean-squared error over all feature vectors, described by (2.70):

lim MSE(S'I1) = Ex [MSE(X 10)] (3.38)
a-*.oc.p-.-oe.

2 [(g,(X 10) - 1)2 . P'v'x(W, IX)

gi(X 10)2  (I - Pwtlx(WiIX))] px(X) dX

I ~ EX [(gi(XI) - pWiX(WuI X)) 2 
-p'%.iX(WaI X) 2 + pitViX(WuIX)]

i--- functional error

2 EX ~ (g,(X 0) - pWX(WjIIX))2]
S2 - [EX ~ squared functional error

0
- EX [PwIx(WuIX) 2 ] + PW(,)i (3.39)

constant

# DError [Q 16] + some constant

Expressions for functional bias and varias'ce can be derived from this mean-squared functional error
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expression (see, for example, [41, sections 2 & 3]). Learning probabilistically by minimizing the MSE

objective function ultimately minimizes the squared fiinctional error between the discriminator outputs and

their corresponding a posteriori class probabilities, as shown in (3.39). Since this measure of functional error

is nor a measure of discriminant error, minimizing it does not guarantee that the classifier's error rate will be

minimized. 16 By the same token, functional bias and variance expressions, while very useful in the function

approximation context, are not necessarily relevant to the pattern recognition context. This is because they

bear no direct relationship to discriminant bias and discriminant variance. In chapter 4 we shall see that

classifiers can exhibit very high functional bias and variance, while exhibiting very low discriminant bias

and variance. In chapter 5 we shall see that decreasing a classifier's functional error can have the undesirable 0
effect of increasing its discriminant error.

In fact, all error measures we have encountered have the same flaws that mean-squared error has; this is

indicated by the expected value of the general error measure over all feature vectors, described by (2.37):

lim EM (S"g1) = Ex [EM(X10)]

-V g-(X-)) -Pwix(WiIX)

+f(gi(X 1) - -D)). (I - PwIx(WIX))] px(X)dX

- DError [ 0 190 + some constant (3.40)

In short, no error measure we know of is monotonically related to discriminant error for the general C-class

pattern recognition task employing the arbitrary differentiable supervised classifier (see section 5.3). Thus,

probabilistic learning cannot be asymptotically efficient by the (universal) definition 3.17. It can, however,

produce the efficient classifier of X for the special case in which G(e) = G(9. X)pm•,: this is the

subject of section 3.6.

3.5 Differential Learning Requires the Minimum-Complexity Classifier

By choosing a particular hypothesis class G(e) with which to classify X, we reduce our possible choices

for modeling the BDF of X to subsets of the four forms of the BDF defined in section 2.2.2:

"'No d•ub, same rads will discern a philsophllical parallel between our argument against using the MSE objective function for
S--listickleauiag nd earlier ugiument against siag MSEaa ap pmaneerestinmtion •cerion. These earlier argument are published

t mlda theane lisesture of the ia thee decade , (ae. for example, (71. 108, 741). Of course, our argument isn against the
WSE objective function per me. but against error measure objective functions in general, since they engender inefficient learning. Again.

we retur to the Psein tha minimnizing a classifier's functional error is not the samne as mininizing its discriminant enmr.
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G(09)ai-,s.41rhttvProbah,iistic 1 X {( 0) : 0(Xlo) E Fa,.,s,,ril. Prhdbili.,c}

G (9 ) R,,e-Prolvbiis,, • {1! g(X 0) : 8(XI6) E F&,,,,pra;,ahai.viic

G (o9)Dff.. r en,, tia- ,ler., .1 { g(XI0) : (X I0) E Fs,,,.stnrctI,.f.renhial} (3.41D)

G(O9)&n,.,Divee.ia_ {19(Xl1) Q (X I1) E F,,,,.T.ore,,.,,t,}

i.e., G(e)Ba,.t•met,,iai = G(e)Bv.o, C F&r,-wsiterrtial =Fsay

By the definitions of section 2.2.2, these sub-sets of the hypothesis class are related as follows:

G (6)9)8a,,.s,,S,,*t. Phc,, . C G(e)Ba.s..stl•Dffe,.,r,, (3.42a)

C G(e)8.,.,-r,,, iti., c G(6)),,:Y.TDffren,it = G(o)) ., c FC3,.4

All of the subsets of G(O) in (3.41) and (3.42) may be empty, in which case G(0) does not contain

a Bayes-optimal discriminator of X (i.e.. {Q(XIO) : C(XIO) E F.m} = 0). Regardless of the

specific nature of G(e) and whether or not it contains a Bayes-optimal discriminator of X, it certainly does

contain a discriminator Q(X 10"* ) that exhibits the minimum discriminant error of any discriminator in

G09):

DError [ 9l x] min DErrorf[9jI (3.43)

Recall from definitions 3.11 and 3.15 that if the relatively efficient classifier is consistent, its discriminator

will converg. to Q(X 1 9*.') as the training sample size grows asymptotically large. Under this condition,

its asymptotic discriminant variance will be zero and its asymptotic MSDE will be given by

2

lim MSDE [9 InG(e),AA = lim (DBias[gInG(e), A) 2 = (DFrror[•IO*

N-40-00 (.43) )
(3.44)

Since the differentially-generated classifier is both relatively efficient and consistent, its asymptotic discrim-

inant bias is indeed DError P I 9**-'] - the minimum allowed by G(S).

If differential learning is guaranteed to produce the least biased approximation to the Bayes-optimal

classifier allowed by G(09) for asymptotically large training sample sizes, then we might consider the set

of all hypothesis classes in % for which DError [!91Q-*0`1 is equal to some specified value DBiassft:
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%spec = {G(e) : G(9) n DError[910`1 = DBias.,4,,,S~ (3.45)
•. (0 43ý

0 < DBiasr,- < 1I

From %spec we might wish to choose the hypothesis class with the least functional complexity; this choice

would therefore have the least functional complexity necessary to classify X with the DBiasr,p, level of

asymptotic discriminant bias. By making this minimum-complexity choice, we would follow the maxim of

Occam's razor: "the simplest model is the best one," 11301.

This, of course, presumes that we have defined an acceptable measure of functional complexity. At

present, a universally accepted definition remains the subject of debate. For this reason, we employ a general

non-specific measure of functional complexity.

The general functional complexity measure T ['l The general functional complexity measure T [-] is

a well-defined real measure T [9(X 10)] E R (the larger the measure, the highcr the complexity). The

notation T.. [G(9)J E .? denotes the upper bound on the complexity of the hypothesis class G(O) :

T., [G(e)] = max T [C(X 10)] (3.46)

Remark: Three well-known complexity measures that satisfy this notion of the general complexity measure
are

"* The Vapnik-Chervonenkis (VC) dimension dimvc (.) [137, 1361.

"* The number of parameters in the hypothesis class (i.e., the dimensionality of parameter space) dim(e)

(e.g., [ 113, 1351).

"* The effective number of parameters in the hypothesis class (96, 971. 0

Example 3.3 The hypothesis class G(9) described in example 3.1 (page 56) has the following complexity:

* If T,.. [G(e)] ! EcI dimvc (gi(X 10)), then the complexity measure is equal to the sum of

the VC dimension dimvc (gi(X I O)) for each of the discriminator's C discriminant functions.17 For •

"See (137, [1136, ch. 6), and 1100, ch. 2.3) for detailed deacriptions of the VC dimension and its computation. To the
-i i we rewconmin de lovely sunmimy by Abu-Mostafa Ill. Strictly speaking, the VC dimension peutain to a 2-class

pstmrecognition task. The mom general C.class task is viewed as C 2-class tasks in which each of the C discrimnnan functions

M(XI ) =--- {u(X 10) ..... Sc (X1)} nmps the feature vector to the binary cassification W1i or -(4 (rma, '"not class i").
The VC dimensin is computed for each of the C discriminant functions separately; the complexity measure does nw sum across
disaimdisu functios at least not for dhe purpose of estimating training sample sizes necessary for good generalization I M6, ch. 61.
In this ese, our using the aum of each discriminant function' VC dimension (EC. I dimvc (gdX I0)) ) as the over-all complexity
measure for the hypothesis class is not consistent with the original intent of the measure. We simply use this sum as a convenient way to
express the overall complexity of the hypothesis class with a single number.

0
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the real polynomial discriminant functions described by (3.7), the VC dimension of each discriminant

function is one plus the maximum number of real roots in the function's polynomial. Thus,

T,,,, [G(e)] = 3- (10 + 1) = 33.

* If T,,,, [G(e)] =• dim(e), then the complexity measure is simply the total number of parametcrs

in G(i9), which in this particular case is equal to the sum of the VC dimension for each discriminant

function: dim(e) = ECj1 dimvc (gi(X 10)) = 3 • (10 + I) = 33.

Given one's preferred measure of functional complexity, there is some minimum-complexity hy-

pothesis class G(e 4.) E %spec that contains a discriminator with minimum discriminant error

min0 , DError [ 0 = DBias.c. Since the differentially-generated classifier, given the hypothe-

sis class G(e ,.), exhibits min0 , DError [!9 10 .1 for asymptotically large training sample sizes, the

following corollary to theorem 3.1 holds:

Corollary 3.1 Differential learning requires the hypothesis class with the least functional complexity neces-

sary to approximate the Bayes-optimal classifier with specified precision. The precision of the approximation

is measured in terms of asymptotic discriminant bias (i.e., the discritninant bias of definition 3.7, given an

asymptotically large training sample size n -4 oo).

Proof : The proof follows from theorem 3.1 (page 67) and the preceding set-theoretic argument. U

Remark: The corollary simply states that differential learning requires the least complex model necessary

for the data. This is generally not the case for probabilistic learning, owing to the relationships of (3.42). As

we shall see empirically in chapter 4 and theoretically in chapter 6, it generally requires substantially more

functional complexity to ensure that G(e)Ble1..s iaiy Promabili.tic and G(e)Bayes.Pmbaiutic are not empty sets

than it does to ensure that G(e)&i,.,D.o,,renaia is not an empty set.

Corollary 3.1 says nothing about differential learning's role in determining the minimum-complexity

hypothesis class G(Qe.) sufficient for Bayesian discrimination. By Kolmogorov's theorem [771 there is

no algorithm short of exhaustive search for determining it a priori. Instead we must restrict ourselves to

a particular a priori choice of hypothesis class G(OR) - - an educated guess, which we believe contains a

Bayes-optimal classifier of X. In making this choice of G(9), we must weigh its discriminant bias for

large sample sizes against its discriminant variance for small sample sizes - the ubiquitous bias-variance

tradeoff that every estimator exhibits. A high-complexity hypothesis class will ensure low asymptotic

discriminant bias at the cost of high discriminant variance for small training sample sizes. A low-complexity

hypothesis class will ensure low discriminant variance for small training sample sizes, but will it exhibit

low discriminant bias (i.e., a low error rate)? Differential learning guarantees that it will exhibit the lowest
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possible error rate for large training sample sizes (theorem 3.1); this in turn guarantees that we can attain

a specific error rate (greater than or equal to the Bayes error rate) with the least complex hypothesis class

necessary (corollary 3. 1). Since discriminant variance increases with the complexity of the hypothesis class

under VC analysis, theorem 3.1 and corollary 3.1 assure us that we can achieve both low discriminant bias

and low discriminant variance by pairing a low-complexity hypothesis class with differential learning.

Because the VC dimension is a complexity measure that satisfies the general characteristics described

above, corollary 3.1 asserts that differential learning requires the hypothesis class G(el) with the smallest

VC dimension necessary to approximate the Bayes-optimal classifier with a specified level of precision.

Consequently, differential learning allows us, under VC analysis [137] [136, ch. 6], to minimize the

probability that the classifier's worst-case failure to generalize (i.e., the worst case deviation of the cl& sifter' s

empirical training sample error rate from its true error rate) will exceed an unacceptable level. This level is
specified by - in (137, Theorem 2]. It is worth noting that this minimal worst-case bound does not stem

from the efficiency of differential learning; it stems solely from the minimum complexity requirements of

differential learning. Thus, there are two ostensibly independent mechanisms by which the differentially

generated classifier generalizes well: the efficiency of the learning strategy itself and its minimum-complexity

requirements.

The only question that remains is whether there is ever a learning strategy with better convergence

properties than differential learning (jAA), given a particular low-complexity hypothesis class. That is,

under what conditions might there be a specific hypothesis class G(9), learning strategy A, and feature

vector X combination for which

MSDE [9 In, G(e), A] < MSDE [! In. G(e), AA] , n << 00

& (3.47)

limn. MSDE [g In, G(e), A] = MSDE [9 1n, G(9), AA]

We know of only one such case: if G(60) is a proper parametric model of X and A is a maximum-likelihood

probabilistic learning strategy, (3.47) can hold.

3.6 The Case for Probabilistic Learning

At the end of chapter 2 the reader might have wondered why differential learning would be desirable. By this

point, the reader might wonder just the opposite: why use probabilistic learning if it is inefficient? Although

we argue in favor of differential learning in most cases, we believe there are at least three scenarios under

which probabilistic learning can be preferable:

e Probabilistic learning is preferable when one specifically wants to estimate the a posteriori class

probabilities of X. By using probabilistic learning, we are obliged to choose a hypothesis class Yith
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sufficient functional complexity to approximate the a posteriori class probabilities of X with high

precision. This, in turn, generally dictates very large training sample sizes for robust probabilistic

estimates (see chapter 6).

" Probabilistic learning might be desirable when one class is always more likely than any other, regardless

of X. As an example, there might be no combination of clinical factors for which the probability of

death exceeds the probability of surviving coronary bypass surgery, yet there will be combinations of

clinical factors for which the probability of death is relatively' high. A physician counselling bypass

surgery candidates might therefore want a robust probability-of-mortality estimate for each patient.

Again, if probabilities must be estimated, we are obliged to satisfy the complexity and training sample

size requirements of probabilistic learning.

"* Probabilistic learning might be preferable if the hypothesis class G(e1) is a proper parametric model

of X (see definition 3.13).

The first two scenarios involve a subjective choice; the third scenario does not. Rather it stems from the

exis.ence of the proper parametric model.

The proper parametric model G(09, X)p,., employing a consistent form of probabilistic learning clearly

satisfies the condition of (3.47) -- namely that its asymptotic MSDE when generated probabilistically is

equal to its asymptotic MSDE when generated differentially:

lim MSDE [Q Iit, G(e, X)pr,,pr, Ap] = MSDE [g in, G(9, X)po,,,r, Ai] (3.48)

As we mentioned earlier in this chapter, a rigorous proof that (3.47) holds when G(e) = G(e, X)p,r, is

beyond both our interest and stamina. Instead, we merely hypothesize why (3.47) holds, sketch a proof, and

describe one particular case (subsequently illustrated in chapter 4) for which the proof holds.

Hypothesis 3.1 If

i. the proper paramt-ific model G(e, X)p,,•r of X exists, and

2. maximum-likelihood estimators of its parameters exist (which we obtain via the maximum-likelihood

probabilistic learning strategy Ap.L I and

3. the variance of each maximum-likelihood parameter estimator matches the Cramer-Rao bound 1107]

[22, ch's. 32-331,

then the classifier r (t(x Iemt) generated from G(9, X)p,,, by the maximum-likelihood probabilistic

learning procedure AP.ML is the relatively efficient classifier of X (definition 3.15)for all training sample

sizes (i.e., v nj. If, in addition, G(9, x)t,,, , the minimum-complexiry hypothesis class containing a
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Bayes-optimal classifier of X. their F (9(X 1GML) constitutes the efficient classifier of X (definition 3.12)

for all training sample sizes.

Sketch of Proof : By [1071 [22, ch's. 32-331, the maximum-likelihood estimate OM1. of the parameter

vector 0' in (3.21) exhibits the lowest possible variance of any estimator of 0' for any training sample

size n. Thus OML converges to 0' with probability one faster than any other estimator of 0". This fastest

convergence implies that DBias [C In, G(e, X)po,,. AP-ML] converges to zero with probability one faster

than it does for any other estimator of the Bayes-optimal classifier obtained from .i(e, X)pr,,wr. By the

definitions of section 3.2, the maximum-likelihood probabilistic learning strategy Ar-ML therefoic generates

the relatively efficient classifier of X from G(0, X)pmpr for all training sample sizes:

MSDE [!I9, G(e,X)pr,,pr, Ap-ML] <_ MSDE [9 In, G(e,X)p,,rn., A]

Vn, vA E (3.49)

If, in addition, Tmax [G(e, X)p,,,rr] is the lowest complexity of any hypothesis class containing a Bayes-

optimal classifier of X, then AP-ML generates the efficient classifier of X from G(&, X),re,, for all

training sample sizes:

MSDE [C In, G(e, X)prnper AP-ML] _ MSDE [p I n, G(e)',A] (3.50)
Vn, vA E IL, VG(e)' E

Remark: Hypothesis 3.1 is not a theorem, and the preceding argument is not a proof, owing to the lack of

rigor on two points:

" First, it is not clear (although it may seem intuitively sensible) that fastest convergence in the

discriminator's parameters necessarily guarantees fastest convergence in the classifier's error rate.

It is possible to make this linkage for specific proper parametric models (see section 3.6.1), but it

remains unclear whether there exists a proof of it for the general proper parametric model satisfying

the requirements of hypothesis 3.1.

" Second, it is easy to conceive of a feature vector X for which the proper parametric model exist, but

for which the proper parametric model is not the minimum-complexity hypothesis class containing a

Bayes-optimal discriminator of X. In such a case, it might be possible to prove that the classifier

generated differentially from the minimum-complexity improper parametric model containing a Bayes-

.,jimal dtscriminator of X is more efficient than the one generated from the proper parametric model
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(i.e., that the improper parametric model's MSDE converges faster than that of the more complex

proper parametric model).

Example 3.4 The normal-based linear discriminant (i.e., Gaussian maximum-likelihood) and logistic re-

gression models are probably the best-known example of a hypothesis class/learning strategy combination

(fully-parametric and partially parametric, respectively) that generates the efficient classifier of X when

X has homoscedastic Gaussian class-conditional pdfs with the additional nice properties described in

appendix F.18 Readers familiar with both traditional logistic regression and neural network models will

recognize that the C-output multi-layer perceptron with logistic nonlinearities and no hidden layer units is

the C-class logistic regression model; th"- partially-parametric model and its associated fully-parametric

Normal-based linear discriminant model (e.g., 191, ch. 31) are described in section 4.2 and appendix F.

Maximum-likelihood probabilistic learning for the partially-parametric model takes the form of minimizing

a Kullback-Leibler information distance expression; for the fully-parametric model it takes the form of

minimizing a mean-squared error expression (see appendix F). The fully-parametric variant is somewhat

more efficient than the partially-parametric variant [30] and constitutes the efficient classifier of X when X

is the Gaussian feature vector described above (see section 4.2).

3.6.1 Assessing the Asymptotic Relative Efficiency (ARE) of a non-Differential

Learning Strategy

Equation (3.47) and hypothesis 3.1 acknowledge the possibility that differential learning (Aa ) is not the

only asymptotically efficient learning strategy for hypothesis classes that are proper parametric models of the

feature vector (or close approximations thereto).

Definition 3.18 Asymptotic relative efficiency: Given the hypothesis class G(e) and two learning

strategies A and A', we define the asymptotic relative efficiency (ARE) of A' with respect to A as the

ratio of the MSDE expressions

ARF -,ooIA',AIG(e)I ýý MSDE[ InG(e)'A']
ARER~OO[',I MSDE [9 In, G(e), A] (3.51)

Remark: This ratio is a generalization of the efficiency ratios for 1) the general estimator [22, sec. 32.31,

and.2) fully-parametric and partially-parametric classifier's of the Guassian feature vector [301 (see sections

4.2 and F.3). The definition focuses on classifiers that differ only in the learning strategy employed; a

"I8Homoscedastic pdfs all have the same covariance matrix. Under a simple linear transf,, madon. a feature vector with homoscedastic

Gaussian class-conditions' puts nas clasb-tmncitional covariance matrices that are all of the form c - I, where I denotes the identity

matrix.
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simple generalization of (3.51) allows a comparison of classifiers that differ in terms of their hypothesis

classes as well. If the ARE can be expressed in closed form for the proper parametric model G(e, X)pr.per,

the differential learning strategy AA, and the maximum-likelihood learning strategy AP.ML, it tells us

which strategy learns the Bayes-optimal classifier faster (i.e., with fewer training examples). The answer

lies in the ratio of MSDE for the two learning strategies, expressed in terms of n as n1 grows large.

If AREn.•.[AP.ML, A1 I G(e, X)p,er.] < I the probabilistically-generated (i.e., maximum-likelihood)

proper parametric model is more efficient than its differentially-generated counterpart for finite training

sample sizes, and hypothesis 3.1 is substantiated for the given proper parametric model.

The notions of definition 3.18 and (3.51) require some explanation. By theorem 3.1 it seems that

ARE,.+.[AP.ML, AN I G(e, X)pr,]pe should never be less than unity, since we have proven that differential

learning generates the relatively efficient classifier for asymptotically large training sample sizes (recall

(3.36)). The existence of cases in which ARE,-,.[AP.ML, AA I G(0, X)pwe] < I would seem to refute

theorem 3.1 by contradiction of (3.36), but it does not. The explanation lies in the difference between a limit

and the rate at which an expression converges to that limit; it is best expressed by a simple example.

Example 3.5 Let us assume that there is a feature vector X for which the proper parametric model

G(e, X)p,,,,•, exists. Furthermore, let us assume that the following MSDE expressions hold:

MSDE [C In, G(e, , A~] = n3.5 (3.52)

MSDE [Cjn,G(e,X)pmor•,,AP.MLI = n-_"'

Equation (3.52) guarantees that the asymptotic MSDE exhibited by both learning strategies is

lim MSDE-[CIn. G(e,X)p,,p,,Ap-ML] = lim MSDE[C n, G(e,X),,,,p,,,A,j = 0, (3.53)

even though the ARE of the maximum-likelihood learning strategy AP-ML is much less than unity:

ARE,.o[AP.ML.Ai, IG(e,x),,•] = n-1 <( 1 (3.54)

That is, both learnirg %trategies generate the Bayes-optimal classifier of X, but the probabilistically-generated

classifier converges to the Bayes-optimal 0 [n-AJ faster than its differentially-generated counterpart

We remind the reader that even if the hypothesis class is a proper parametric model, the differentially

generated classifier will generalize as well as the orobabilisticnlly-generated (maximum-likelihood) classifica,

as long as the training sample size is very large. If (3.5 1) can be evaluated for a particular G(e, X)p, and

AP-mt., then we have a means of evaluating whether or not probabilistic learning is preferable (i.e., whether

or not hypothesis 3.1 is substantiated for G(e, X)prner, and AP-ML ) when the training sample size is small.

I0



3.7 Sunmniar. 8I

3.6.2 A Word Regarding "Proper Models"

The term "proper model" probably originates with Dawes 1261. From the statistical pattern recognition

perspective, he uses the term to describe a parametric model of the feature vector, the parameters of which

are learned (i.e., estimated) by a "proper" - by which he means probabilistically motivated - method.

As mentioned above, logistic regression is an example of a proper model when the feature vector has

homoscedastic Gaussian class-conditional pdfs with the additional nice properties described in appendix F.

The model parameters are learned by the "proper" method of maximum-likelihood. Dawes characterizes

an improper model as one for which the parameters are learned by some "improper" method (i.e., one that

is not probabilistically defensible). He argues both eloquently and persuasively that improper models often

yield better pattern classifiers than proper ones.

We agree. Indeed, we submit that the proofs of this and the preceding chapter explain the phenomenon:

so-called "proper" probabilistic learning strategies are inefficient, yielding Bayesian discrimination only if

the parametric model with which they are paired is a proper one for the feature vector. Dawes' "improper"

parameter estimation strategies are superior when the parametric model is improper by our definition because

they are more efficient, generating classifiers that exhibit lower MSDE than their probabilistically-generated

counterparts. The irony is that probabilistic learning strategies aren't always the best ones to employ. Indeed,

it motivates us to restrict the adjectives "proper" and "improper" to the parametric model (i.e., hypothesis

class) alone. In our view there are no proper or improper learning strategies, only efficient and inefficient
ones.

3.7 Summary

In this chapter we have defined the efficient classifier, the relatively efficient classifier, the efficient

learning strategy, and the asymptotically efficient learning strategy. We have defined the mean-squared

discriminant error of a classifier, and motivated its use as a measure of generalization - how closely and

how consistently the classifier approximates the Bayes-optimal classifier's minimum error rate. We have

proven that the differential learning strategy is asymptotically efficient, guaranteeing the best approximation
to the Bayes-optimal classifier allowed by one's a priori choice of hypothesis class when the training sample

size is asymptotically large. Moreover, we have proven that differential learning requires the minimum

classifier complexity necessary for Bayesian discrimination. We have proven that probabilistic learning

strategies are usually inefficient, failing to generate the best approximation to the Bayes-optimal classifier

for all but possibly one choice of hypothesis class, regardless of the training sample size. Furthermore,
prnbabilistic learning generally requires more than the minimum classifier complexity ne,•cssary for Bayesian

discrimination.
Viewing all differentiable supervised classifiers as parametric models of the feature vector, we have

distinguished between proper and improper parametric models. We have shown that if the proper parametric
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mz, el of the feature vector exists, it is possible for probabilistic learning to generate a better approx imý,"ion to

the Bayes-optimal classifier than differential learning can when then training sample size is small. Given the

explicit desire to estimate the a posteriori probabilities of the feature vector or a reasonable likelihood that

the hypothesis class constitutes a proper parametric model - as determined by traditional hypothesis testing

procedures (e.g., see [140]) -- probabilistic learning is the preferred strategy. Absent these, differential

learning is the best strategic choice, provably requiring the simplest model of the data and the smallest

training sample size necessary for good generalization.



Chapter 4

The Robust Beauty of
Differentially-Generated Improper
Parametric Models'

Outline

We analyze two "toy" problems in order to make the theoretical arguments of chapters 2 and 3 more tangible.

We begin with a familiar 2-class Gaussian pattern recognition task; we illustrate that the probabilistically-

generated classifier can be more efficient than its differentially-generated counterpart for small training

sample sizes if the hypothesis class is the proper parametric model of the feature vector. We contrast that task

with a simple 3-class pattern recognition task in order to illustrate that differential learning is asymptotically

efficient and requires the minimum-complexity classifier necessary for Bayesian discrimination. The analysis

confirms that differential learning generates the relatively efficient classifier for small as well as large training

sample sizes when the hypothesis class is not a proper parametric model of the feature vector. Probabilistic

learning fails to generate the relatively efficient classifier - regardless of the training sample size - when

the hypothesis class is an improper parametric model.

4.1 Introduction

The purpose of this chapter is to illustrate the theoretical points of chapters 2 and 3 so that the reader will

gain an intuitive appreciation of differential learning - a more tangible understanding of the arguments we

have made so far. We analyze two "toy" problems in order to illustrate

* the asymptotically efficient, minimum-complexity nature of differential learning,

e the generally inefficient, high-complexity nature of probabilistic learning, and

'The title of this chapter is inspired by R. M. Dawes' paper The Robust Beaur." of Improper Linear Models (261. This chapter is a
revised and extended version of work first published in [52J.

83
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* the special circumstances under which probabilistic learning can be efficient.

We illustrate these characteristics by contrasting a pattern recognition task for which the chosen parametric

model is proper with a task for which the chosen parametric model is improper.

We begin with a familiar 2-class pattern recognition ta ', for which the single feature is a homoscedastic,

Gaussian-distributed random variable; we learn to classify this random feature with its proper parametric

model in both full and partial forms, showing that probabilistically-generated variants are more efficient than

the differentially-generated variant when the training sample size is small. All learning strategies generate

equally efficient classifiers from the proper parametric hypothesis class as the training sample size grows

large. We contrast this result with a simple 3-class pattern recognition task for which the single feature is

a heteroscedastic, uniformly-distributed random variable; we learn to classify this random feature with a

polynomial classifier, which is an improper parametric model, showing that differentially-generated variants

are always more efficient than their probabilistically-generated counterparts for both small and large training

sample sizes. The 3-class task also illustrates the minimal complexity requirements of differential learning.

Both of these illustrative tasks lend themselves to closed-form analysis, so the classifiers' learn-

ing/classification characteristics can be derived for asymptotically large training sample sizes. We analyze

the classifiers' characteristics for small training sample sizes via simulations. In effect, we play the role of an

oracle like the one described in section 3.2. Each classifier/learning strategy that we analyze learns repeatedly

over ten independent trials. In each trial all the different classifier/learning strategies learn the same training

sample of size n; the training sample for each trial is drawn independent of all other training samples. We

compute the true error rate for each classifier at the end of each trial, using the exact expressions for the

feature's a posteriori class probabilities and class prior probabilities; we compile the results for all trials.

Each classifier's posterior parameterization (and, as a result, its error rate) varies from trial to trial when

the training sample size n is finite. When n is infinite, each classifier's error rate is a constant (i.e., its

discriminant variance is zero), owing to the convergence properties of the random feature (see appendix B)

and ihe consistency of each classifier.2 We obtain approximate values of each classifier's discriminant bias,

discriminant variance, and mean-squared-discriminant error (MSDE) by computing the sample mean and

sample variance of the classifier's error rate across the ten trials for each training sample size. Thus, the only

difference between the experimental protocols of this chapter and the protocol for the oracle in example 3.2

(page 61) is that we run a finite - as opposed to an infinite - number of independent learning/test trials

for each classifier.
We emphasize the differences between differential and probabilistic learning strategies by contrasting

the results of these two experiments. In the process of evaluating the 2-class proper parametric model, we

demonstrate experimental results that are consistent with Efron's theoretical comparison of the logistic and

2 All of the learning strategies we employ lead to consistent classifiers (see definition 3.11). The differentially-generated classifier is
proven to be consistent in section 3.3.1; the probabilistic consistency proofs proceed along the lines of the differential proof; we leave
the details to the interested reader.
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normal-based linear discriminant analysis paradigms 130]. More importantly, our experiments reflect the

theoretical findings of chapters 2 and 3: differential learning always generates the most efficient classifier

allowed by the hypothesis class, given a sufficiently large training sample; probabilistic learning, in contrast,

fails to generate the most efficient classifier allowed - regardless of the training sample size - unless the

hypothesis class is a proper parametric model of the data.

4.2 Analysis of a Proper Parametric Model

Figure 4.1 illustrates a two-class scalar x with homoscedastic3 Gaussian class-conditional pdfs for classes

W, and UW2. There is one class boundary (B1,2a..., = 0) for the Bayes-optimal classifier of x. The

class-conditional pdfs of x are given by

p*, V(xw10,) = ,2 exp[-=2'• (X - l,)2]

p.,lw (TI0 2) = V2 exp[---27'(x - 192)'] ; (4.1)

it = -1,65, 112 = 1.65, o2 = I

The class prior probabilities are Pw(W1 ) = Pw(W 2) = !. The a posteriori class probabilities of x are

PwNX (u), x) = [I + exp [-=2 (2x (pi - P2)- 1'f +i'12]]-'

PIVI. (0 2 1x) = I - PwIV ( )1 tx) (4.2)

* = [I + exp [--=2, (2X(/12- /i) + i1' -- 2l)]]-';

ll = -1.65, P2 = 1.65, 12 =

Given the values of it, ,P2, and o2, the Bayes error rate rate is 4.9% when the following classification

strategy is employed:

X <_ 13
1,2Bay.., choose W 1 3

1,2&IVS = 0 (4.3)

X > 131,2 Ba.',, loose 0W 2

4.2.1 The Proper Parametric Model

We employ two forms of the same "logistic linear" classifier4 to learn the Bayes-optimal classifier of x. The

first form is the fully-parametric proper model; the second is the partially-parametric proper model.

-Recall that homoscedastic pdfs all have the same variance parameter (or covariance matrix).
4See section 7.2.2.
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-1.65 1.65

x
-1.65 1.65

Figure 4. 1: A two-class scalar feature discrimination task. The single feature is a homoscedastic, Gaussian-
distributed random variable. Top: class-conditional density - class prior products pxlw(xI Wj) • Pw(Wi);
those for class W I are shown in dark gray; those for class W2 are shown in white; the region of overlap is
shown in light gray. Bottom: the a posteriori class probabilities Pwlx(Wji I x) and PWlx(W2 Ix).

S

I g,(xl 0)

x_1.65 1.65

g,(xl 0) o

0.5

x
-1.65 1.65

Figure 4.2: The proper parametric model of x. The logistic linear hypothesis class follows from both the
partially-parametric and fully-parametric proper models of x. Discriminant functions are shown for three
parameterizations that yield Bayes-optimal discrimination of x. The dashed line denotes the parameterization
by which the discriminant functions are identically the a posteriori class probabilities of x. The solid lines
denote two different parameterizations by which the discriminant functions partition feature space in the
Bayes-optimal fashion; note that neither of these parameterizations yields discriminant functions that are 0
identically the a posteriori class probabilities of x.

0
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The fully-parametric proper model describes x in terms of its class-conditional pdfs; its parameters

model the unknown class-conditional means and the unknown variance parameter of x:

g,(xlO) -- Pov (XIW , , 2)

_~Xi (I W I j-1 ) + p',~ (X Iwia)

-. t + exp [; (I,2 - 1) x + =2 (,, - 2)]]'

g2(xI6) = I - g,(xle) (4.4)

P.'t, 2X I W2,i 2

t fi + exp [-;' (,12 - PO) X - =2 (,, - 2)]]

where

* P~ e1 (X , i,, , ; -p (X _ (4.5)

The parameter vector 0 in gi(xl ) above denotes the three parameters {fT ,ji , 2}.

The classifier described by (4.4) is depicted in figure 4.2. It is, by definitions 3.13 and 3.14, a proper

parametric model of x because the discriminant functions of (4.4) are identically equal to the a posteriori

class probabilities of(4.2) when /t = II,/t2 = l'2, and ;
2 = a2. More specifically, (4.4) describes the

fully-parametric proper modcl of x, generally called the normal-based linear discriminant analysis paradigm

in the statistical pattern recognition literature (e.g., [91]). We denote this model with the initials "ML" since

the model learns by the method of maximum-likelihood, described in detail for the general homoscedastic

Guassian feature vector in section F. I. The resulting maximum-likelihood parameters are

-1 = Z T((X', W')) . X
ni

(4.6)

i=i j=i

where xJ denotes the jth example of x (as opposed to the jth power of x, which we denote by (x)J). Note

that
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19
= Wi ,= ,'J) =(4.7)S,0, otherwise

and ni denotes the number of examples having the class label Wi in the training sample of size n.

The class boundary B,,2ML formed by the fully-parametric (ML) model is the value for whi :

g, (Ba,2MLIO) = g2(B1,2MLIO) = 1 ; this occurs at

131,2 FIh.-Paramec I + F12 (4.8)
2

The partially-parametric proper model describes x in terms of its a posteriori class probabilities; its

parameters model the unknown parameters of these probabilities. Given the following defin'tions

A I2 -- 1

/ 2 2 (4.9)

= 2o~2

the a posteriori class probabilities in (4.2) can be written as follows:

PpVl, (W II x) = [I + exp[ax + 13]] (4.10)

PIVil (W21 T) = [I + exp[-a x - 313]'

The partially-parametric proper model oi x is given by

g,(xIO) = [I + exp[O,,,x + 0,,o]]-'

g2(x I) = [I + exp [-1,,1 x - ).,011-',

where 0 = 101,0,011. It is, by definitions 3.13 and 3.14, a proper parametric model of x because the

discriminant functions of (4.11 ) are identically equal to the a posteriori class probabilities of (4.2) and (4.10)

when 01,1 = a= and 01,o = 13 = I2A• f. More specifically, (4.4) describes the partially-

parametric proper model of x, generally called the logistic discriminant analysis (or logistic regression)

paradigm in the statistical pattern recognition literature (e.g., [91]). The model learns )y the method of

maximum-likelihood, described in detail for the general homoscedastic Guassian feature vector in section F.2.

The resulting maximum-likelihood parameters cannot be expressed :n closed form. However, section F.2

proves that these parameters are obtained by minimizing the Kullback-Leibler information distance (CE

[82, 81 ], see section 2.3.2) between the discriminant functions and their corresponding empirical a posteriori
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class probabilities over the domain of x. The proof has been worked previously by Akaike and White

12, 140, 1411 and by Hjort [651. We denote the partially-parametric model generated probabilistically via the

maximum-likelihood/Kullback-Leibler information distance learning procedure with the initials "CE".

The class boundary 831,2 CE formed by the partially-parametric model is the value for which

g1(131,2 CE 10) = g2(B3,2cE 10) = 1; this occurs at

--01,0
131,2 Parial[y-Parapyetric = - (4.12)01,1

4.2.2 Probabilistic Learning for the Asymptotically Large Training Sample

For the asymptotically large training sample size (i.e., n -+ ocx), the maximum-likelihood parameters of the

fully-parametric (ML) proper model are

tl= Itl

lim P2 = l'2 (4.13)

U'2 = a2

(see section F.l). By (4.2) and (4.8), lim 5-,, 0i,2MLV = L3l,28a•.s = 0, and the ML classifier exhibits

Bayesian discrimination.

For asymptotically large training sample sizes, the maximum-likelihood parameters of the partially-

parametric model are given by

Pt2 - PI
01,1 = -" P2-

CF2

lira (4.14)
0  3 2a2 2

(see section F.2). By (4.2) and (4.12), limn., L31,2CE = L31,28.3, = 0, and the CE-generated

partially-parametric proper model exhibits Bayesian discrimination.

Since the partially-parametric proper model constitutes a differentiable supervised classifier (defini-

tion 2.8, page 25), it can be generated with any error measure, not just CE. We denote the general error

measure by "EM". We denote the training sample of size n by S", and we denote a particular unique value

(or pattern) of x by xp. If there are P unique patterns in S", and for each of these patterns there are npi

examples belonging to class Wi, the sample EM is given by5

•Please see section 2.3.1 far specific constraints on the forms of f(D - gi(x8) ) and f(gi(x O) -- D).
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-- v."' [r ':.-, ,1o) (,"
EM (S" 10) 1:1 - [ np" f(D - g,(Xp 10)) + (np - "e,,) -*f(g,(X, 10) - -)

i= 1 p=1 it! lip lip

P 9
Ei flp,i = I
p=I

(4.15)

From section 2.3. 1, we know that the classifier's EM can be expressed by the following expectation as the

training sample size grows asymptotically large: 4

E, [EM (x e)1 =
C=2

E •: V(D - g,(xlO)) . PIVx(WiIx) p
i.4 IPx(x) dx (4.16)

+f(gi(xJO) - -'D) - (I - PwIx(WuIx))]

The parameterization 0* that minimizes the classifier's EM for the asymptotically large training sample

size can be found by substituting the discriminant function expressions of (4.11) into (4.16), deriving the

expression for the gradient V 6 (Ex [EM (x 10*)]), setting this gradient equal to the zero vector, and solving

the resulting normal equations (see section 2.3. 1). Since the partially-parametric model is proper, and since the

general error measure is, by definition (see section section 2.3. 1), minimal when gi(x 1 O) = Pwl, (Wi Ix) Vi,

the general error measure generates the parameters of (4.14) for asymptotically large training sample sizes.

By (4.12), the general error measure therefore generates the Bayes-optimal classifier from the partially-

parametric model, given an asymptotically large training sample; that is, L 31,2 FM = 131,2 B•vs = 0,

and the EM-generated partially-parametric proper model exhibits Bayesian discrimination.

4.2.3 Differential Learning via CFM for the Asymptotically Large Training Sample

The partially-parametric proper model can also learn differentially. Differential learning is implemented by

maximizing the classification figure-of-merit (CFM) objective function described in section 2.2.4, chapter 5,

and appendix D. The procedure is virtually the same as probabilistic learning, except for the change in

objective function. From section 2.4, the sample CFM is given by

c=2 ( [ C P

CFM(S.q. lO) = • 8 [or [Ji(xp 1O),w, . ] ; Z n,, = n (4.17)
i=l =np p=l
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In this C = 2-class case, the discriminant differentials 6 are given by

bi(xp1I) = 2g 1(xplJ) -I

62(xpIO) = -6,(XpIO) (4.18)

= I - 2g,(xplO),

and g,(x[ 9) is given by (4.11). Details of the CFM confidence parameter t/ are given in appendix D.

The classifier's CFM can be expressed by the following expectation as the training sample size grows

asymptotically large (section 2.4):

C=2

E,[CFM(xlo)] = O / o[,6i(x10),t!"] Pvl,(W, Ix) px(x)dx (4.19)
i=1*"-

Section 2.4 proves that when the classifier is differentially-generated, the CFM objective function

(limV,,o+ ) is maximized when the top-ranked discriminant differential (i.e., 6 (t1 (xI 0) ) corresponds to the

most likely class of x over the feature's domain: 7 mathematically,

lim no E, [CFM (xl 07)] in (4.19) is maximized if 9* is such that
V1.+0+ (4.20)

bS(,)(xf 9) = 6.(xI0"); PVj., (w. Ix) > max PWI, (Wk Ix)

Of course (4.20) holds only if the classifier has sufficient functional complexity to yield Bayesian dis-

crimination. The logistic linear classifier does, so it maximizes CFM, satisfies (4.20), and constitutes the

Bayes-optimal classifier when its parameters satisfy the following constraintsc

0 IOCFM = 0
(4.21)

01,I CFM < 0

When these conditions are satisfied, the resulting class boundary equals the Bayes-optimal boundary by

(4.12):
lirn '•12CFM = La,,2 &mns = 0 (4.22)

V5-40+

6Recall definition 2.7 and section 2.4.
?We remind the reader that the logistic linear classifier for the C = 2-class pattern recognition task has only one discriminant

function gI (x 10); we create a phantom second discriminant function R2 (x 10) = I - RI (x 10) for the purpose of computing and using
the discriminant differentials 6• (x 10) and 62(x 10). This is an artifice by which differential learning is extended to the single-output,
differentiable supervised classifier.
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4.2.4 Results of Differential and Probabilistic Learning for Asymptotically Large

and Small Training Samples

A word regarding error rates: Recallfrom definition 3.1 (page 55) that the true error rate Pe (C I 8) for

the classifier of x is given by1

P, (Ql) t E. [Pe (Q(xO ))I ( (X10) px(x) dx (4.23)

where

Po(Q(XI1)) I - Pw.((xl) Ix) (4.24)(4.24)

= I - Pwk (r(g(xI1))1x)

The error rates that we quote in this chapter -for both the proper and improper paramet-

ric models - are computed according to (4.23), since we play the role of an oracle, we know

the probabilistic nature of the feature x, and the associated integrals are tractable. Specific de-

tails of the error rate computations for this section and section 4.3.4 are given in appendix G. S

Figure 4.3 displays the empirical distribution of the error rates for four logistic linear classifiers of x,

based on ten independent learning/testing trials. Statistics are shown for the fully-parametric model and the

partially-parametric model; the latter employs two forms of probabilistic learning (via the MSE and CE error

measure objective functions) as well as differential learning (via the CFM objective function). Results for

differential learning via CFM are shown in white; results for probabilistic learning via ML (fully-parametric

model) and CE and MSE (partially-parametric model) are shown in gray. The results are shown in box-plot

[ 131, ch. 2] statistical summaries. In brief, the box of each plot has vertical extrema that match the first and

third quartiles of the sample data; the horizontal line dividing the box delineates the median of the sample

data; the inner and (if shown) outer "T"-shaped "fences" of each plot depict the nominal lower bound

of the first quartile and nominal upper bound of the fourth quartile. Extreme values in the first and fourth

quartiles falling beyond the outer fence(s) are plotted as dots (see appendix C for details of the box plot

statistical summary). All results for finite training sample sizes are based on 10 independent trials for the

specified training sample size (all classifiers learn the same training sample in a given trial, for a given sample

size). Learning for the fully-parametric proper model is a simple maximum-likelihood parameter estimation

procedure, the computations of which are specified by (4.6). For the partially-parametric model, learning

takes the form of a steepest descent (MSE, CE, etc.) or steepest ascent (CFM) search over parameter space.

using a modified form of the backpropagation algorithm (e.g., [119, 120]); learning begins from a tabula
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rasa state in which all parameters are initialized randomly according to a uniform distribution on the closed

interval [-.3, .3]. All trials are completely automated, so learning is done without any human intervention.

All experimental conditions (except, of course, the objective function used) are identical for differential

and probabilistic learning. Classifier parameterizations for the asymptotically large training sample size are

derived as described in sections 4.2.2 and 4.2.3.

The box plots of figure 4.3 are empirical analogs to the whisker plots of figure 3. 1. That is, they give

us approximations of the discriminant bias, discriminant variance, and mean-squared discriminant error

(MSDE) for each classifier/learning strategy. They show that the fully-parametric proper model is the most

efficient estimator of the Bayes-optimal classifier for small (10) and medium (100) training sample sizes.

The CFM-generated partially-parametric model is the least efficient for small training sample sizes (note the

one trial for which the CFM-generated classifier's error rate is 27%, depicted as a dot in the figure). As

the training sample size goes to 100 examples, all the partially-parametric models are roughly comparable,

although significantly less efficient than the fully-parametric model. When the training sample size increases

to 1000, all the classifiers appear comparable. These box plots are noteworthy for two reasons: first, they

demonstrate that the differentially-generated classifier is indeed asymptotically efficient (as the training

sample size increases beyond 1000 examples, the differentially-generated model is as good as any of the

others); second, they demonstrate that the probabilistically-generated proper parametric models are the most

efficient classifiers for small training sample sizes.

This second finding is consistent with our theoretical description of the circumstances under which

probabilistic learning is more efficient than differential learning for small training sample sizes (section 3.6).

An analysis of a single 10-example learning trial lends a qualitative dimension to the theoretical description

of the phenomenon. Figure 4.4 shows the empirical class-conditional pdfs - empirical class prior probability

products of a 10-example random sample of x; they are shown in histogram form, superimposed on the

true class-conditional pdfs - class prior probability products of x. There are five examples of each class;

all the examples of W, fall to left of x = -. 75; all the examples of W02 fall to right of x = 1.4.

As a result, there is an interval [-.75, 1.4] inside which there are no training examples. Nevertheless, the

partially-parametric proper model generated probabilistically from these ten training examples (using the CE

objective function) forms a class boundary B1,2 CE very close to the Bayes-optimal boundary Bs,2 B.,, = 0.

The model's logistic linear discriminant functions and the partitioning of feature space they produce are

shown in figure 4.5; they exhibit a 5. 1 % error rate - a good approximation to the Bayes error rate of 4.9%,

despite the small training sample size and the lack of any examples on the interval [-.75, 1.41. Because it

reduces to estimating the parameters of a model that is known to be proper in this particular case, probabilistic

learning via CE is efficient even for small training sample sizes. The lack of training examples in the

vicinity of 81,2 B,,ES is of little consequence because all training examples contain information about the

class-conditional means pI and P2 and the variance parameter a 2 of the partially-parametric proper model;
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30E. Differential Learning (CFM)

* Probabilistic Learning (MSE)

0 Partially-Parametric Proper Model (CE)

El Fully-Parametric Proper Model (ML)
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Figure 4.3: A comparison of error rates for differentially (CFM) and probabilistically (MSE, CE, and ML)
generated logistic linear classifiers. Results for the differentially generated classifier are shown in white;
those for the probabilistically generated classifiers are shown in gray (MSE = dark gray, CE = medium gray,
ML = light gray). Note that the ML-generated logistic linear classifier is the fully-parametric proper model
of x; the CE-generated logistic linear classifier is the partially-parametric proper model of x.

that is, good estimates of these parameters are possible even when the training sample contains no examples

near 51,2 Ba.s.. Differential learning, on the other hand, does not exploit the proper nature of the logistic

linear discriminant functions; it views the discriminant functions in a completely "agnostic" way, employing

them in any manner that classifies the training sample correctly. Since any partially-parametric proper model

with the parameters

-. 75 < e1,OCFM < 1.4
(4.25)

01,1 CFU < 0

will classify the training sample without error, there is a wide choice of maximum-CFM parameterizations

for the classifier. The discriminant functions of the CFM-generated partially-parametric proper model, given

these 10 training examntpes, are shown in figure 4.6. Note that their partitioning of feature space deviates

significantly from the Bayes-optimal partitioning; they exhibit a 10.1% error rate -- a poor approximation

to the Bayes error rate of 4.9%.

These results illustrate a simple fact: if there is a proper model for the data, probabilistic learning

will generate the efficient classifier from it by exploiting the proper nature of the model. Indeed, it can

be argued (via the Cramer-Rao notion of efficient parameter estimation 1107) [22, ch's. 32-331) that
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Figure 4.4: The empirical class-conditional pdfs of x multiplied by their empirical class prior probabilities
for a training sample size of 10 examples; they are shown in histogram form (dark gray), superimposed on the
true class-conditional pdf-- class prior probability products (lighter gray). There are five examples for each
of the two classes. The bar-graph below the class-conditional pdfs depicts the Bayes-optimal partitioning of
feature space; the class boundary occurs where the bar-graph shifts from class W I to class W 2.

the probabilistically-generated proper parametric model exploits all of the Fisher information (e.g., [2])8

contained in the training sample, whereas differential learning by its very nature does not. We stress that

the Fisher information content of the training sample pertains to the unknown parameters of the model; it

does not pertain specifically to the Bayes-optimal class boundaries on feature space. Thus, the information is

useful (i.e., it is valid information) for pattern recognition purposes only if the model is indeed proper.

Efron has proven that the fully-parametric proper model is the most efficient classifier of the 2-class

feature vector with homoscedastic Gaussian pdfs; the partially-parametric model is somewhat less efficient

'See [28, sec. 7.81 for an concise, readable discussion of Fisher information and its relationship to the Cramer-Rao bound.
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Figure 4.5: The empirical a posteriori class probabilities of x for the 10 examples of figure 4.4; they are
shown in histogram form (dark gray), superimposed on the true probabilities (lighter gray), which are shown
only for the finite interval -10 < x < 10. Histograms take on a default value of zero for regions on the
domain of x where no training samples occur. The discriminant functions of the CE-generated logistic linear
classifier (i.e., the partially-parametric model of x) are superimposed in black. Note that the CE-generated
classifier's partitioning of feature space is a close approximation to the Bayes-optimal partitioning.

-3.0 0 3.0

P~ 
oI 

" 
, X)

-3.0 0 3.0 X

2 Bayes311- CE

Figure 4.6: The same empirical a posteriori class probabilities shown in figure 4.5. The discriminant functions
of the CFM-generated logistic linear classifier are superimposed in black. Note the large gap between the
examples of U) I and W2 on the domain of x: since differential learning via CFM is discriminative, any set of
discriminant functions that forms a class boundary in this gap is "optimal". As a result, the CFM-generated
classifier's partitioning of feature space is a poor approximation to the Bayes-optimal partitioning, given this
small training sample size (n = 10).
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[301. As we describe in section F.3, Efron's notion of asymptotic relative efficiency differs from ours: he

defines ARE as the ratio of one model's discriminant bias to another model's; we define ARE as the ratio

of one model's MSDE'(squared discriminant bias phls discriminant variance) to another model's. This

difference notwithstanding, the philosophical motivation for both definitions is similar. Since our feature x

has class-conditional means of it = -1.65 and 112 = 1.65 and a variance parameter of or2 = I, the

Mahalanobis distance (e.g., [29, pg. 24]) between the class-conditional means is 3.3. Given this and the equal

class prior probabilities of ½, Efron predicts that the asymptotic discriminant bias of the fully-parametric

proper model will be - .55 that of the partially-parametric model (see [30, (1.12)]).

Figure 4.7 displays the approximated MSDE (,-MSDE) for the four classifiers in figure 4.3; figure 4.8

displays their approximated discriminant bias (--DBias) for the experiments. The box plots in figure 4.3

display the results in quartiles, whereas ,-,MSDE and ,-DBias are based on sample averages; this accounts

for slight differences among the figures. Again, the fully-parametric proper model (ML) and the partially-

parametric proper models (CE, MSE) are all probabilistically-generated; one partially-parametric proper

model (CFM) is differentially-generated. The ML model's -MSDE is consistently lowest for all finite

training sample sizes; the other probabilistically-generated models' ,MSDE is appreciably lower than the

CFM model's for a training sample size of 10. For sample sizes greater than 100 all the partially-parametric

models are roughly equivalent. For asymptotically large training sample sizes, all four classifiers exhibit zero

MSDE. The gray-shaded region in figure 4.7 denotes values of -,MSDE less than 10-6. We consider all

classifiers that exhibit ,.MSDE below this threshold to be equally good approximations of the Bayes-optimal

classifier. To put this in perspective, a classifier with 0. 1% discriminant bias and no discriminant variance

exhibits a MSDE of 10-6, as does a classifier with no discriminant bias and a discriminant variance of

10-6. Thus, this MSDE threshold constitutes a rigorous standard of good approximation. The gray-shaded

region in figure 4.8 denotes values of ,-,DBias less than l0--, a threshold that is identical to the -•MSDE

threshold if the classifier has no discriminant variance. We consider all classifiers that exhibit -DBias
below this threshold to be equally unbiased approximations of the Bayes-optimal classifier. Both figures

show that probabilistic learning generates more efficient, less biased classifiers for small training sample

sizes than differential learning does. As the training sample size grows large (i.e., as it exceeds 103),

the differentially-generated classifier becomes as good an approximation to the Bayes-optimal classifier as

any of the probabilistic models - a phenomenon consistent with the asymptotic efficiency of differential

learning. It is not surprising that the ML model is consistently more efficient than all the others. Indeed,

based on our I0-trial experiments, the ,,DBias of the ML model is 3 x 10-4, whereas it is 7 x 10-4 for the

CE model. Since the ML model is the fully-parametric maximum-likelihood paradigm and the CE model is

the partially-parametric maximum-likelihood paradigm, Efron's prediction applies. We denote the logistic

linear hypothesis class (ultimately employed by both the ML and CE models) by G(e); we denote the

ML model's maximum-likelihood probabilistic learning scheme by AP.ML, and we denote the CE model's
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Figure 4.7: A comparison of the approximated mean-squared discriminant error (-MSDE) for the differen-
tially (CFM) and probabilistically (MSE, CE, and ML) generated classifiers. Results for the differentially
generated classifier are shown by the solid line; those for the probabilistically generated classifiers are shown
by dashed lines. The gray background depicts the value of -,MSDE below which we consider all classifiers
equally good approximations to the Bayes-optimal classifier. The CFM-generated classifier is not as efficient
as its probabilistically-generated counterparts when the training sample size is small (0 [ 10]); however, owing
to the asymptotic efficiency of differential learning, the difference between the CFM-generated classifier and
its probabilistically-generated counterparts is negligible for sample sizes greater than C) [103] (cf. figure 4.3).
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Figure 4.8: A comparison of the approximated discriminant bias (-DBias) for the differentially (CFM)
and probabilistically (MSE, CE, and ML) generated classifiers. Results for the differentially generated
classifier are shown by the solid line; those for the probabilistically generated classifiers are shown by
dashed lines. The gray background depicts the value of -,DBias below which we consider all classifiers
equally good approximations to the Bayes-optimal classifier. The CFM-generated classifier exhibits higher
discriminant bias than its probabilistically-generated counterparts when the training sample size is small
(0 [10]); however, owing to the asymptotic efficiency of differential learning, the difference between the •
CFM-generated classifier and its probabilistically-generated counterparts is negligible for sample sizes greater
than 0 [!0l&1 (cf. figure 4.3).



4.3 Improper Parametric Model 99

maximum-likelihood probabilistic learning scheme by AP-CE. Based on the probabilistic nature of x Efron's

prediction is

DBias [g i,, G(9), AP.ML] - 0.55 (4.26)
,n--. DBias [g n. G(e), AP.CE]

Our experiments, depicted in figure 4.8, yield

"DBias [g InG(i9),'APMLI - 0.43; n = 103, (4.27)
- DBias [! in, G(e), AP-CE]

which is a good approximation to Efron's prediction, considering the small number of trials and the small

training sample size used.

Efron poses (and answers) the rhetorical question, "why use the partially-parametric model if the

fully-parametric model is more efficient." The reason is that the fully-parametric model is proper if and only

if x has homoscedastic Gaussian class-conditional pdfs; the partially-parametric model remains proper for

a broader set of exponentially-distributed feature vectors (e.g., [831). We extend the rhetorical question one

more level: why use the differentially-generated parametric model if the probabilistically-generated models

are more efficient? The reason is that the fully- and partially-parametric models are proper for x only so long

as it has a specific probabilistic form; if the probabilistic nature of x deviates from this form, the parametric

models are no longer proper. Under these circumstances, differential learning will still generate the most

efficient classifier allowed by the parametric model for asymptotically large training sample sizes, whereas

the probabilistic learning strategies will generate decidedly inefficient classifiers from the model for both

small and large training sample sizes. We analyze an improper scenario in the following section in order to

illustrate this point.

4.3 Analysis of an Improper Parametric Model

Figure 4.9 illustrates a three-class scalar x with heteroscedastic9 uniform class-conditional pdfs for the

three classes (W 1 ,W 2 ,W0-). There are two class boundaries (L1,2 11,., = -4.0, B2,3 Sa.ws = 4.0) for the

Bayes-optimal classifier of x. The class-conditional pdfs of x are given by

Pxlw (xIUJg) = I [u(x + 5.8) - u(x + 3.8)]

Pjw (xIW 2) = j [U(x + 4) - U(x - 4)] (4.28)

P,,, (xIW.) = ½ [u(x - 3.8) - U(x - 5.8)]

where U(. ) denotes the Heaviside step function. The class prior probabilities are
9 Heteroscedastic pdfs have different variance parameters (or covariance matrices).
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P)V(03j) = Pw(W3) = 0.1
(4.29)

Pw(02) = 0.8,

and the a posteriori class probabilities of x are given by

PW., (W, x) = U(x + 5.8) - 2 U(x + 4) - U(x + 3.8)

PVIr (W2 IX) = U(x + 4) + ' U(x + 3.8) - U(x - 3.8) - .U(x - 4) (4.30)

PVlX,(W3Ix) = u(x - 3.8) + 4U(x- 4) - u(x- 5.8)

Thus, the Bayes error rate is 2.0%, given the following classification strategy:

X < 83 1,2Bayes, choose 03t

2Ba12e. <_ X < 13 2,3Bayes, choose 032  (4.31)
X > 12,3 Bates, choose W3,

4.3.1 The Improper Parametric Model

We learn to classify x with a 3-output discriminator that has polynomial discriminant functions of the form

9(xI0) y, = g,(xlO) L oj, k (x) i = K= 3 (4.32i
k=O

where Ki represents the order of the polynomial expression for the ith discriminant function (again, we use

the notation (x) k to denote the kth power of x, as opposed to x *, which denotes the kth example of x ). As

described in section 2.2. 1, we interpret the discriminator output with the largest value as the classifier's vote

for the class of its scalar input x. This polynomial classifier is depicted in figure 4. 10 and it is generated with

a modified form of the backpropagation algorithm (e.g., [119, 120]). It is, by definitions 3.13 and 3.14, an

improper parametric model of x because the discriminant functions of (4.32) are not under any circumstances

identically equal to the a posteriori class probabilities of (4.30).

Given our interpretation of the classifier's outputs in section 2.2. 1, it is clear that if yi and y3 are linear

functions of x and Y2 is a constant, the resulting classifier depicted by the white nodes and black connections

in figure 4.10 has the minimum functional complexity necessary to learn the Bayes-optimal classifier of

x (the gray nodes and connections depict more complex hypothesis classes - equating to higher order

polynomial expressions in (4.32) - for this task).'0

OReference [521 incorrectly states that the minimum-complexity polynomial classifier has two linear discriminant functions and one
quadratic discriminant function. As described herein, the third discriminant function need only be a constant for the classifier to yield
Bayesian discrimination.
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Figure 4.9: A three-class scalar feature discrimination task. The single feature is a heteroscedastic, uniformly-
distributed random variable. From top to bottom: the class-conditional density - class prior products
Pxiw (x I W) • Pw(Wi); the pdf of x px(x); the a posteriori prob..bility of class W 2 PwI, (W2 Ix); the a

posteriori probabilities of classes W 1 and W3 PWý, (W, I x) , PwJ, (WV3 I x).
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0
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010

(bias) •

Figure 4.10: The polynomial classifier of x depicted as a neural network paradigm. Hidden layer nodes
compute powers of x; output nodes are linear combinations of these powers - cf. (4.32). The polynomial
classifier with the minimum complexity necessary for Bayesian discrimination of x is indicated by the white
nodes and black "connections" (i.e., parameters); the minimum-complexity parameters are labeled.

Minimum-, low-, and high-complexity classifiers: For the purpose of this illustration Ki - the

order of the ith polynomial in (4.32) - may be taken as the complexity measure for the ith dis-

criminant function gi(x 0). We generate classifiers from three polynomial hypothesis classes of in-

creasing complexity. As described above, the minimum-compiexity hypottnesis class has discriminant

functions of order K, = I, K2 = 0, and KI = I; we often use the notation "1-0-1" to denote

this hypothesis class. Our choice of low-complexity hypothesis class has discriminant functions of or-

der K, = 1, K2 = 2, and K3 = I; we often use the notation "1-2-1" to denote this hypothesis

class. Our choice of high-complexity hypothesis class has discriminant functions of order Ki = 10,
K2 = 10, and Ki = 10; we often use the notation "10-10-10" to denote this hypothesis class.

4.3.2 Probabilistic Learning via MSE for the Asymptotically Large Trainin, Sample

Probabilistic learning is implemented by minimizing a measure of the difference between the discriminator

output vector Y and a corresponding target vector denoting the class of the training example (see section 2.3);

the minimization is done for all examples in the training sample, and generally takes the form of an iterative

search procedure. We employ backpropagation, a well-known probabilistic learning paradigm; its iterative

search procedure is gradient descent, and the gradient of the classifier's MSE with respect to the parameter

vector 0 is computed by the chain-rule 1i 19, 1201."1

"11Backpropaption generally employs MSE. although other objective functions can be used. We employ only the MSE objective
function for probabilistic learning. The CE objective function, for example. cannot be used because the polynomial classifier's outputs
are unbounded; this violates the conditions necessary for using CE (see section 2.3.2). When paired with the CFM objective function
and a gradient ascent search. backpropagation constitutes a differential learning strategy.
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Again, we denote the training sample of size n by Sn, and we denote a particular unique value (or

pattern) of x by x.. If there are P unique patterns in S1, and for each of these patterns there are np,i

examples belonging to class Wi, the sample MSE is given by

('= P' r 'MSE(S'IC) = P _ .. ' I(gi(xp e) - 1)2. "1p,_ + (gi(xp, 1)) 2 
.n - npt

i=I p= nL lip np

(4.33)

E 12 "i' =n
p= I

From section 2.3.2 we know that the classifier's MSE can be expressed by the following expectation as the

training sample size grows asymptotically large:

E, [MSE (x 0)I =

I /, [(gi(xIO) - 1)2 Pwvx(Wilx)+ (g.(xIO)) 2  Pwr('-,"W Ix)] Px(x)dx(4.34 )2 =1 ' ,

where

Pwk, (-W, I x) • I - Pw 1 (Wi Ilx) (4.35)

The parameterization 0" that minimizes the classifier's MSE for the asymptotically large training sample

size can be found by substituting the discriminant function expressions of (4.32) into (4.35), deriving the

expression for the gradient V6 (E. [MSE (xl 10)]), setting this gradient equal to the zero vector, and

solving the resulting normal equations (see section 2.3.2).

Barnard and Casasent use this technique for deriving the minimum-MSE parameterization of a linear

classifier, given a 2-class Guassian feature 16]. Appendix H derives distribution-independent expressions

for the asymptotic minimum-MSE parameterization of the ith discriminant function gi(x 10) in (4.32);

expressions are given for constant, linear, and quadratic discriminant functions (i.e., for Ki = 0, 1, 2).

Distribution-independent expressions for the minimum-MSE parameterizations of higher-order polynomial

discriminant functions become cumbersome, so we derive the minimum-MSE parameterization of the high-

complexity classifier (i.e., the MSE-generated "10-10-10" model) in distribution-dependent form using

(4.28), (4.30), (4.32), and and (4.35). Table 4.1 summarizes the results of appendix H; it lists the minimum-

MSE parameterizations of the minimum-, low-, and high-complexity classifiers, given an asymptotically

large training sample size.
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Asymptotic Minimum-MSE Parameterizations n -4 oo

Minimum-Complexity Classifier" 1-0- I"

gi(x16) (Xg2(xIO) g3(xI )
01,0 = 0.1 2,0 = 0.8 03,0 = 0.1
01,1 = -. 0536833 02,1 = 0 03,1 = 0.0536833

Low-Complexity Classifier "1-2- "

gl (XI 0) g2(X•I0) g3(x 10)
91,o = 0.1 ± 2,0 = 1.13764 03,0 = 0.1
01,1 = -. 0536833 021 =0 03,1 = 0.0536833

01,2 = 0 2,2 = -0.0377619 F1,2 = 0

High-Complexity Classifier "10- 10- 10"

g,(xIO) g2(x 10) g3(x 10)
01,0 = -0.0222177 02,0 = 1.04444 0.1,0 = -0.0222177
91,1 = -0.0535861 02,1 = 0 03,1 = 0.0535861
01,2 = 0.0513984 02,2 = -0.102797 03,2 = 0.0513984
01.,3 = 0.0273086 02,0 = 0 03,21 = -0.0273086
01,4 = -0.0172172 02,4 = 0.0344344 03,4 = -0.0172172
01,5 = -0.00319705 02,5 = 0 03,5 = 0.00319705
01,6 = 0.00179515 02,6 = -0.00359029 03,6 = 0.00179515
01,7 = 0.000110813 02,7 = 0 03,7 = -0.000110813
61,, = -0.0000664743 02,8 = 0.000132949 03,8 = -0.0000664743
81,9 = -0.00000120399 02,9 = 0 03,9 = 0.00000120399
01,o = .000000815606 02,10 = -0.00000163121 03,10 = .000000815606

Table 4. 1: The minimum-MSE parameterizations for the minimum-, low-, and high-complexity polynomial
classifiers of x when the training sample size n is asymptotically large (i.e., n -+ 00).

4.3.3 Differential Learning via CFM for the Asymptotically Large Training Sample

Differential learning is implemented for the improper parametric model in the same way it is implemented

for the partially-parametric proper model of section 4.2.3. The minimum-complexity polynomial classifier

maximizes CFM, satisfies (4.20), and constitutes the Bayes-optimal classifier when its parameters satisfy the

following constraints:

01,I CFU < 0

03,1 CFM > 0 (4.36)

01,1CFM" 5
1 ,2BnTeS + 

0 I,OCFU - 02,0CFM = 0

03, 1CFM 52,3 ayes + 03,0CFU - 02,0CFU = 0
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When these conditions are satisfied, the resulting class boundaries equal the Bayes-optimal boundaries:

81,2 CFM = L
3

1,2 Bayes
(4.37)

B2,3 CFM = 532,3 Daye.3

4.3.4 Results of Differential and Probabilistic Learning for Asymptotically Large

and Small Training Samples

Regardless of the strategy used to determine the classifier's parameters, the resulting class boundaries occur

at all x for which more than one discriminant function is maximal. For the minimum-complexity polynomial

classifier, this occurs at

B1,2 = 02,0 -0,0

(4.38)

S= 2,0 - 03,0

03,1

Figure 4.11 illustrates the discriminant functions of several polynomial classifiers that have learned to rec-

ognize the three classes that x represents, given an asymptotically large training sample. Both the top and bot-

tom figures show the discriminant functions superimposed in color on the gray a posteriori class probabilities

PWlz (W1 I x) , Pwx (W2 Ix) , Pw11 (wh3 Ix). There is a bar-graph display associated with each classifier

underneath the discriminant functions. The bar-graph shows how its associated classifier partitions feature

space.12 The Bayes-optimal classifier's partitioning is always shown in gray for reference. The top figure

shows two minimum-complexity classifiers: one generated probabilistically via the MSE objective function

(red, short-dashed lines), and one generated differentially via the CFM objective function (solid green

lines). Because the probabilistically generated classifier is attempting to approximate PwI. (Wi Ix) and

PwI, (W. Ix) with linear functions of x and PWI, (W1 I x) with a constant, the minimum-MSE discriminant

functions are as shown (their parameter values are given in table 4. 1, top), and the resulting classifier labels

all examples of x as W 2. As a result, the classifier misclassifies all examples of W, and W3 ; its error rate

is therefore 20%.13 The differentially-generated classifier shown is one set of an infinite number of possible

maximum-CFM discriminant functions. Its parameterization is such that gi(x 10) is always maximum on the

12 Note that the legend "CFM 1-0-I ". for example, denotes the differentially generated, minimum-complexity polynomial classifier.137he MSE-generated minimum-complexity classifier would exhibit an error rate much closer to the Bayes-optimal rate of 2% for
large training sample sizes if the linear discominant functions for class W I and W 3 were replaced by logistic discrinminant functions.
Thi- is because the resulting hypothesis class would be a substantially better approximation to the proper parametric model of x. This
extends to a general argument for hypothesis classes with a logistic functional basis: many real-world feature vectors have unimodal

* class-conditional pdfs, so their a posterior class probabilities are reasonably well modeled by a logistic functional basis. This accounts
for the success and wide-spread use of probabilistically-generated logistic regression models and multi-layer perceptions.., a subject
we address further in chapter II. Of course, our choice of the functional basis is intentionally malicious here: we wish to illustrate the
disadvantages of probabilistic learning when the parametric model is improper.

0
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sub-domain of x for which Wi is the most likely class. As a result, the classifier satisfies (4.20) and exhibits

the Bayes error rate of 2%.

It is clear from figure 4.11 (top) that the minimum-complexity classifier has insufficient functional

complexity to learn the Bayes-optimal classifier probabilistically (i.e., to approximate the a posteriori class

probabilities of x). Figure 4.11 (bottom) illustrates what is required to do this. If we increase the complexity

of g2(xI 0) by making it a quadratic function of x, the resulting minimum-MSE discriminant functions are

shown in short-dashed red lines (their parameter values are given in table 4. 1. middle). This low-complexity

classifier has enough functional complexity to classify some examples of W1 and W3 coirectly, although it

still lacks sufficient complexity for Bayesian discrimination. Its error rate is 7.8%. The differentially generated

low-complexity classifier (solid and shaded green lines) - like its minimum-complexity counterpart -

yields the Bayes error rate of 2%. Again, there are innumerable maximum-CFM parameterizations for the

differentially-generated classifier; the green shaded lines in the figure depict several of these. Finally, we

increase the complexity of the probabilistically generated classifier so that all three discriminant functions are

10th-order polynomials in x. These discriminant functions are shown by the blue dashed lines in the lower

figure; only the MSE-generated classifier is shown (its parameter values are given in table 4.1, bottom).

This high-complexity classifier has sufficient functional complexity to approximate the a posteriori class

probabilities of x reasonably well when generated via the MSE objective function; it exhibits a 2.2% error

rate - nominally the Bayes error rate.

Figure 4.11 illustrates that differential learning requires the minimum-complexity polynomial classifier.

necessary for Bayesian discrimination. The minimum-complexity requirements of differential learning hold

for any and all choices of hypothesis class, as proven in section 3.5. Probabilistic learning, in contrast,

requires a high-complexity polynomial classifier in order to approximate the Bayes-optimal classifier - a

result that is representative of the generally excessive complexity requirements of probabilistic learning, the

single notable exception being when the hypothesis class is a proper parametric model.

So far we have considered the asymptotic case in which we have an unlimited number of training

examples. It is more realistic to consider the case in which we have a limited amount of training data.

Figure 4.12 depicts the same classifiers shown in figure 4.11 with one difference: the classifiers in figure 4.12

have been generated with a single training sample containing only n = 100 examples of x (the different

classifiers all learn the same 100 examples). The minimum-complexity classifiers (top) behave in much the

same way as they do for the asymptotically large training sample. The probabilistically generated classifier

(red, short-dashed lines) misclassifies all examples of W, and W1. Owing to the small sample size, the

empirical a posteriori class probabilities of x are crude approximations to the true probabilities. As a result,

the differentially-generated classifier's partitioning of feature space (solid green lines) deviates slightly from

the Bayes-optimal partitioning, and its error rate is 3.4%. The low-complexity classifiers (bottom) also

behave in much the same way as they do for the asymptotically large training sample. The probabilistically
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Figure 4.11: Discriminant functions ofprobabilistically (MSE) and differentially (CFM) generated polynomial
classifiers of x for an asymptotically large training sample size (i.e., n -+ oc). The functions are shown
superimposed on their associated a posteriori class probabilities (shown in gray). Each of the bar-graphs
underneath the discriminant functions depicts how its associated polynomial classifier partitions feature
space. Top: the minimum-complexity classifier ("1-0-1") having one constant and two linear discriminant
functions. Bottom: a low complexity classifier ("1-2-1") having one quadratic and two linear discriminant
functions, and a high-complexity classifier ("10-10-10") having three 10th-order polynomial discriminant
functions (MSE-generated only). Numerous low-complexity CFM-maximizing classifiers are shown (green
shaded lines) in order to emphasize that there are innumerable optimal solutions when differential learning is
employed.
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Figure 4.12: Discriminant functions of probabilistically (MSE) and differentially (CFM) generated polynomial
classifiers of x for a typical training sample of size n = 100. Again, the functions are shown superimposed
on their associated a posteriori class probabilities (shown in gray), and each of the bar-graphs underneath
the discriminant functions depicts how its associated polynomial classifier partitions feature space. Tep:
the minimum-complexity classifier ("1-0-1 ") having one constant and two linear discriminant functions.
Bottom: a low complexity classifier (" 1-2-1 ") having one quadratic and two linear discriminant functions,
and a high-complexity classifier ("10-10-10") having three 10th-order polynomial discriminant functions
(MSE-generated only).
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generated classifier (red, short-dashed lines) exhibits an error rate of 7.8%, and the differentially-generated

classifier (solid green lines) exhibits an error rate of 3.3%.

Recall that the high-complexity classifier exhibits a 2.2% error rate for the asymptotically large training

sample. Since the empirical a posteriori class probabilities of x are crude approximations to the true

probabilities when n = 100, there are regions on the domain of x where no training examples occur. The

classifier's discriminant functions are unconstrained in these regions during learning. Figure 4.12 (bottom)

illustrates what happens as a result. The high-complexity classifier's discriminant functions (blue dashed

lines) are unconstrained for values of x above -, 5.2 and below - -5.0 because the training sample contains

no examples beyond these limits. As a result, the discriminant function for U)3 is maximal for x < - -5.0,

the discriminant function for W1 is maximal for -,, 5.2 < x <,- 5.7, and the discriminant function for

WJ2 is maximal for x > -- 5.7. The resulting partitioning of feature space (bottom blue bar-graph) is poor,

and the classifier exhibits a 7.8% error rate. This is a classic expression of Occam's razor [ 130, 2 1 ], in which

the classifier has so much functional complexity it fails to generalize well for small training sample sizes.

Figure 4.13 displays the empirical distribution of the error rates for minimum-, low-, and high-complexity

polynomial classifiers of x. Results for differential learning via CFM are shown in white box plots; results

for probab;listic learning via MSE are shown in gray box plots. As with the proper parametric model

experiments, all results for finite training sample sizes are based on 10 independent trials for the specified

training sample size (all classifiers learn the same training sample in a given trial, for a given sample size).

Learning takes the form of a steepest descent (MSE) or steepest ascent (CFM) search over parameter space,

using a modified form of the backpropagation algorithm (e.g., [119, 120]). Learning begins from a tabula

rasa state in which all parameters are initialized randomly according to a uniform distribution on the closed

interval [-.3, .3]. All trials are completely automated, so learning is done without any human intervention.

All experimental conditions (except, of course, for the objective function used) are identical for differential

and probabilistic learning. Classifier parameterizations for the asymptotically large training sample size are

derived as described in section 4.3.2, appendix H, and section 4.3.3.

Figure 4.14 plots sample-average approximations of each classifier's mean-squared discriminant error

(,-MSDE): these values correspond to the box plot statistics in figure 4.13 (the box plots display the results

in quartiles, whereas ,-MSDE is based on sample averages; this accounts for slight differences between the

two figures). The minimum-complexity differentially generated classifier is the most efficient, exhibiting

consistently low error rates for small training sample sizes. Based on chapter 6, we predict that 1121 samples

of x are necessary to guarantee (with 95% confidence) an error rate of no more than 4.0% using differential

learning. Note that the empirical upper bound on the differentially generated minimum-complexity classifier's

error rate is 3.3% when the sample size is 1000. Increasing the differentially generated classifier's complexity

increases its empirical discriminant variance, according to Occam's razor (i.e., excessively complex models

are anathema).
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Figure 4.13: A comparison of error rates for differentially (CFM) and probabilistically (MSE) generated
polynomial classifiers. Results for the differentially generated classifiers are shown in white; those for the
probabilistically generated classifier are shown in gray. Left: the minimum-complexity classifier having one
constant and two linear discriminant functions; Middle: a low complexity classifier having one quadratic and
two linear discriminant functions; Right: a high-complexity classifier having three 10th-order polynomial
discriminant functions.
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Figure 4.14: A comparison of the approximated mean-squared discriminant error (,-MSDE) for differentially
(CFM) and probabilistically (MSE) generated polynomial classifiers. These statistics are based on the same
data used to generate the box plots in figure 4.13. Results for the differentially generated classifiers are
shown in solid lines; those for the probabilistically generated classifier are shown in dashed lines. The gray
background depicts values of ,-MSDE for which we consider the classifier to be a good approximation to
the Bayes-optimal classifier. Left: the minimum-complexity classifier having one constant and two linear
discriminant functions; Middle: a low complexity classifier having one quadratic and two linear discriminant
functions; Right: a high-complexity classifier having three 10th-order polynomial discriminant functions. 0
Owing to the inefficiency of probabilistic learning, none of the MSE-generated classifiers is relatively
efficient for any training sample size.
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The inefficiency of probabilistic learning is clear in figures 4.13 and 4.14. The minimum-complexity

classifier has no discriminant variancc, but its approximate discriminant bias is 20% - 2% = 18%. The

low-complexity classifier has substantially lower approximate discriminant bias (8.3% - 2% = 6.3% for

n = 1000), but its discriminant variance is high (2.2 x 10-1 ). The high-complexity classifier has moderate

discriminant bias (5.4% - 2% = 3.4% for n = 1000), and moderate discriminant variance ( 1.3 x 10-4)

- substantially better than the probabilistically generated low-complexity classifier, but substantially worse

than the differentially generated minimum-complexity classifier.

The gray background of figure 4.14 denotes values of -,MSDE for which we consider a classifier to be

a good approximation to the Bayes-optimal classifier. Specifically, if the classifier's ,MSDE is less than

10-6, we consider it a good approximation.14 All of the differentially-generated polynomial classifiers are

asymptotically good approximations to the Bayes-optimal classifier, whereas none of the probabilistically-

generated classifiers are. Moreover, the minimum- and low-complexity differentially-generated classifiers are

between one and two orders of magnitude more efficient than their probabilistically-generated counterparts.

As the model complexity becomes high, both differentially and probabilistically generated classifiers are

inefficient models of the data for small training sample sizes - a clear expression of Occam's razor.

4.4 Summary

The "toy" experiments of this chapter illustrate the theoretical proofs of chapters 2 and 3. Differential learning

is asymptotically efficient, regardless of the hypothesis class (i.e., parametric model) employed, whereas

probabilistic learning is efficient (for both large and small training sample sizes) only if the hypothesis class

is a proper parametric model of the data. This implies a kind of robust beauty in the differentially-generated

classifier: it is guaranteed to be the best approximation of the Bayes-optimal classifier allowed by the model

of the data, so long as the training sample size is sufficiently large. As we stated in chapter 3, we know of no

other learning strategy that can make this guarantee.

""There is no doubt that probabilistic learning in the form of maximum-likelihood parameter estimation15

is the most efficient learning strategy if the parametric model is indeed a good approximation to the proper

one. Our contention is that this is not always the case. If the parametric model is simple, traditional statistical

hypothesis testing procedures (e.g., see [ 1401) can verify whether or not it is proper. If the model is complex,

0 complexity theory argues against its being proper, particularly when the training sample size is small. This

leads us to conclude that differential learning is the best choice of learning strategy if the model is likely to

be improper. The experiments of part 11 consistently show this to be a valid conclusion.

14Again. a classifier with a discriminant bias of 0. 1% and a discriminant variance of zero exhibits an -.MSDE of 10-6. so this is a
rigorous standard for good approximation.

I-"We remind the reader that maximum-likelihood parameterestimation generally equates to probabilistic learning via an error measure
objective function.
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Chapter 5

Properties of the CFM Objective
* Function'

Outline

We examine the relationship between the objective function's monotonicity and the efficiency of the learning

strategy it implements: the objective function must be monotonic for the learning strategy to be efficient.2

This chapter's proofs that the CFM objective function is monotonic for the general C-class pattern recognition

task parallel the chapter 3 proofs that differential learning is asymptotically efficient. Likewise, the proofs that

error measures are non-monotonic for the general C-class pattern recognition task parallel the chapter 3 proofs

that probabilistic learning is inefficient. Moreover, probabilistic learning becomes increasingly inefficient as

the number of classes C increases, owing to the increasingly non-monotonic nature of error measures. We

develop a simple taxonomy of training examples in order to show that differential learning via CFM focuses

on un-leamed examples. Among these, there are easy and hard examples. We explain why easy examples

can be learned with high confidence, whereas hard examples must be learned with low confidence. We

conclude by examining the specific functional characteristics of CFM in order to motivate the synthetic form

we employ. We prove that differential learning via the synthetic form of CFM remains both efficient and

reasonably fast as learning confidence is reduced. In contrast, differential learning via the original functional

forms of rFM (55] is unreasonably slow and/or inefficient.

5.1 Introduction

Differentiable supervised classifiers that learn iteratively employ an objective function (or empirical risk

measure) that evaluates how well the classifier has learned to classify all the examples of the training sample.

A monotonic objective function is one that is always a strictly decreasing (or increasing) function of the

I Portions of this chapter were first published in (55).
2 An objective function is monotonic if and only if it is either a strictly increasing or a strictly decreasing function of the classifier's

empirical training sample error rate (see definition 5.10).

113
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classifier's empirical training sample error rate. Chapter 2 establishes a link between families of objective 0
functions and the learning strategies they implement: error measures engender probabilistic learning, whereas

the CFM objective function engenders differential learning. Section 3.3 indirectly proves that maximizing

the CFM objective function minimizes the classifier's empirical training sample error rate (the proof is

part of the larger proof that differential learning via CFM is asymptotically efficient). In other words,

CFM is a monotonic objective function. Section 3.4 proves that minimizing the general error measure

does not minimize the classifier's empirical training sample error rate. In other words, error measures

are non-monotonic objective functions; they engender inefficient learning (unless the hypothesis class with

which they are paired is the proper parametric model of the feature vector).

In this chapter, we take a geometric view of the discriminator's output state in order to illustrate the

monotonic nature of the CFM objective function and the non-monotonic nature of error measures. We

demonstrate that probabilistic learning strategies become increasingly inefficient as the number of classes

C in the pattern recognition task ,ncreases, owing to the non-monotonic nature of error measures. In the

process, we develop a simple taxonomy of training examples. Fundamentally, each training example falls

into one of two categories: learned and (as yet) un-learned. The un-learned examples are either easy to learn

or hard to learn (terms we define in section 5.4). We show that differential learning via the synthetic CFM

objective function focuses on the un-learned examples; we explain why easy examples can be learned with

high confidence, whereas hard examples must be learned with low confidence.

We conclude by analyzing the functional characteristics of CFM in order to motivate the synthetic form

we employ. The analysis focuses on the process of learning hard examples with necessarily low confidence.

Since the differentiable supervised classifier learns by searching over parameter space, the speed of the

learning procedure (i.e., its convergence rate) is proportional to the step size of the search procedure. We

prove that differential learning via the synthetic form of CFM is reasonably fast for both easy and hard

examples: convergence to the CFM-maximizing parameters proceeds at a rate that decreases polynomially

with respect to the synthetic CFM confidence parameter V/). In contrast, we prove that differential learning

via the original forms of CFM [55] is inefficient and/or unreasonably slow. In the latter case, convergence

to the CFM-maximizing parameters proceeds at a rate that decreases exponentially with respect to the CFM

confidence parameter.

5.2 Discriminator Output Space

We precede our discussion of monotonicity with a number of definitions that follow from a geometric view

of discriminator output space Y. Recall from section 2.2. 1, we generally assume that discriminator output

space is infinite and uncountable for the C-class discriminator (i.e., Y = -c ). In this section we will assume

that each discriminator output is uncountable on a closed interval with lower and upper bounds I and h:
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Y E Y = [I,hlc (5.1)

When I -+ -oo and h -4 oo, (5.1) is equivalent to Y = .•c. We therefore use the bounds I and h

without loss of generality.

Some of the following definitions might seem rather abstract and tedious at first reading. We encourage

the reader to persevere, reading the definitions first without dwelling on the associated mathematical details,

which are simply more formal expressions of what we say in words. Those who want to work through the

mathematical details can go back through the definitions a second time. The concepts are all geometric and

rather simple, which should become apparent as one proceeds through the first reading of the definitions.

Examples and figures help to clarify the concepts.

Definition 5.1 The discriminant continuum: Consider the classifier with the discriminator output

space Y defined by (5.1), given the jth example Xi as its input. The example's class label is Wj. The

classifier's discriminant continuum, given (Xi, WJ), is an imaginary line drawn between two particular,

opposite vertices of Y. The "incorrect" vertex of Y is the point Yfrrna at which the discriminator output

associated with the class W i has a minimum value; all other discriminator outputs have a maximum value:3

I , wV• = Wi
Yincora •= (YI .... YcO : Yi = h, otherwise (5.2)

The opposite "correct" vertex of Y is the point Yorl'e, at which the discriminator output associated with

the class W i' has a maximum value; all other discriminator outputs have a minimum value:

h , Wi = Wi
Yco, '.....yc) : yi = I otherwise (5.3)

The discriminant continuum is the line between Yi.C, m and Yr,,,,:

IY : Y = -f,,•, + (I - o.Vc,•,}; 0 < 'I < 1 (5.4)

Remark: Note that the discriminant continuum is a notion that is tied to specific examples of the random

feature vector: each of these examples has an associated class label WJ, and this class label determines the

specific mathematical expression for the discriminant continuum via (5.2) - (5.4). Definitions 5.2 - 5.9 are

tied to specific examples of the random feature vector in precisely the same manner.
3 Recall from section 2.2.4 that we use the notation y, to denote the discriminator output associated with the class WI = W= we

use the notation V to denote the largest other discriminator output. We remind the reader that we rely on these notational conventions
throughout the text.
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Definition 5.2 Reduced discriminator output space: Consider the classifier with the discriminator

output space Y defined by (5. I), given the jth example Xj as its input. The example's class label is Wi . If

we re-express discriminator output space thus

Y =YI X×... Y ye; 3i = Ul,h], (5.5)

reduced discriminator output space, given (Xi, Wi), is the 2-dimensional sub-space of Y comprising

the domain Y, of the discriminator output y, (corresponding to Wi = W,) and the domain YT, of

the discriminator's largest other output y. Mathematically, reduced discriminator output space for the

example/class label pair (X J, WV J) is given by

Y, x yT;
(5.6)

W = 0,, Yr E Y,, Te YET, yT = max Yk

kir

Example 5.1 Figure 5.1 illustrates reduced discriminator output space for a hypothetical classifier with C

discriminator outputs that take on values between zero and one (i.e., Y = [1 = 0,h = I]c). Three

training examples are projected onto the space as gray dots. Each example XJ elicits an output state

C(XiI 0) = {gi (Xi 10), ... ,gc(Xi 10)) = {Yl, .... yc} in the discriminator. Given the jth training

example, the position of the dot along the horizontal axis denotes the value of the discriminator output

y, = g,(XJ 6), which corresponds to the example's class label Wi = W, ; the position of the dot along

the vertical axis denotes the value of the largest other discriminator output T = maxkgr gk(Xj I 0).

Definition 5.3 The reduced discriminant continuum: The reduced discriminant continuum is
the projection of the discriminant continuum (definition 5.1) onto reduced discriminator output space

(definition 5.2). Consider the classifier with the discriminator output space Y defined by (5. I). Giv"n the jth

example/class label pair (Xi, WJ), the discriminator outputs y, and Tr and their corresponding domains

YT and Y are determined by the example's class label Wi = Wr. and the discriminator output state

Q(Xi 10). The reduced discriminant continuum is the line between 1) the point in reduced discriminator

output space for which Yr takes on its minimum value and T, t-'kes on its ma=imum value, and 2) the

point in reduced discriminator output space for which Yr takes on its maximum value and T, takes on its

minimum value. In vector notation, the reduced discriminant continuum is given by

TI. Tr I h (5.7)

W = U), 0 <0 I
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Remark: We often abuse terminology by using the terms (reduced) discriminant continuum and (reduced)

discriminator output space synonymously. We assume that the reader understands that the two concepts are

inextricably linked, so each term implies the other.

Example 5.2 Figure 5.1 illustrates the reduced discriminant continuum on the reduced discriminator output

space of our hypothetical classifier. It is the line between the point (y, = 0,T, = I) and the point

(y, = I ,T-7 = 0) . The line is offset by dashed lines for clarity, and it is labelled "Discriminant Continuum"

rather than "Reduced Discriminant Continuum" for the sake of simplicity.

Remark: Intuitively, the discriminant continuum and its reduced counterpart represent a line between the

worst possible incorrect classification and the best possible correct classification of an example. Our use

of the terms "worst" and "best" are quantitative in the following sense: the worst possible incorrect

classification occurs when Y = YinCo-red - the discriminator output corresponding to the example's class

label is minimum and 3ll the other outputs (corresponding to incorrect classifications of the example) are

maximum; the best possible correct classification occurs when Y = Ycorec - the discriminator output

corresponding to the example's class label is maximum and all the other outputs (corresponding to incorrect

classifications of the example) are minimum.

Definition 5.4 The discriminant boundary: Consider the classifier with the discriminator output

space Y defined by (5.1), given the jth example XJ as its input. The example's class label is WJ. The

discriminant boundary is the the set of all discriminator output states, given (XJ, Wi), for which the output

yy (corresponding to the example's class label WJ = W) is equal to the largest other output T, and

greater than or equal to all other discriminator outputs:

{Y: yr T=y n yr yk Vk r}; 6 =W (5.8)

0
Definition 5.5 The reduced discriminant boundary: The reduced discriminant boundary is the

projection of the discriminant boundary onto reduced discriminator output space:

{(yY,., T) : y. = T)} ; W' i = W, (5.9)

Example 5.3 Figure 5.1 illustrates the reduced discriminant boundary on the reduced discriminator output

space of our hypothetical classifier. It is the line between the point (y,. = 0,yT = 0) and the point

* (Y, = I T' = i). The line is labelled "Discriminant Boundary" rather than "Reduced Discriminant

Boundary" for the sake of simplicity.

0
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Definition 5.6 The "incorrect" side of discriminator output space Yi,,,o : Consider the classifier

with the discriminator output space Y defined by (5.1), given the jth example X J as its input. The example's

class label is Wi. The "incorrect" side of discriminator output space, given (Xi, W•) , is the set of all

discriminator output states for which the output y, (corresponding to the example's class label WV ' = (44

is not maximal. Mathematically, the incorrect side of discriminator output space is given by

Yincorec {Y : y, <_ yk forsome k i T} ; ' = (5.10)

Definition 5.7 The "incorrect" side of reduced discriminator output space: The incorrect side of

reduced discriminator output space is the projection of the incorrect side of discriminator output space onto

reduced discriminator output space:

{(y1r,y) : Y", < y}; W' = Wr (5.11)

Incorrect space: We sometimes use the term "incorrect space" to denote the incorrect side of discriminator

(and reduced disciminator) output space.

Example 5.4 Figure 5.1 illustrates the incorrect side of reduced discriminator output space for our hypothet-

ical classifier. It is the region above and to the left of the reduced discriminant boundary.

0
Definition 5.8 The "correct" side of discriminator output space Yinora" Consider the classifier

with the discriminator output space Y defined by (5. I), given the jth example X i as its input. The example's

class label is Wi. The "correct" side of discriminator output space, given (Xi, Wi), is the set of all

discriminator output states for which the output y, (corresponding to the example's class label W 1 = W, )

is greater than all other outputs. Mathematically, the correct side of discriminator output space is given by

Y {Y: y, > yk Vk # rl ; W• = W, (5.12)

Definition 5.9 The "correct" side of reduced discriminator output space: The correctside of reduced

discriminator output space is the projection of the correct side of discriminator output space onto reduced

discriminator output space:

{1y6,T) : Yr > T) ; W' = Wr (5.13) 0

0
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Figure 5.1: Reduced discriminator output space for a hypothetical classifier with C outputs that take on
values between zero and one. The reduced space is 2-dimensional: the abscissa corresponds to yr, the
discriminator output corresponding to the class label of the example that the classifier is processing; the
ordinate corresponds to T;, the largest other discriminator output. The discriminator output states generated
by three different hypothetical examples are projected onto this space. Examples I and 3 are correctly
classified since they generate a discriminator output state in which the output associated with the example's
class is larger than all other outputs (i.e., y, > 3w). Example 2 is incorrectly classified since it generates a
discriminator output state in which the output associated with the example's class is smaller than at least one
other output (i.e., y, < ,).

Correct space: We sometimes use the term '•correct space" to denote the correct side of discriminator

(and reduced discriminator) output space.

Example 5.5 Figure 5.1 illustrates the correct side of reduced discriminator output space for our hypothetical

classifier. It is the region below and to the right of the reduced discriminant boundary.
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5.2.1 The Discriminant Differential 6,, the Reduced Discriminant Continuum, and

the Reduced Discriminant Boundary

Recall from (2.22) that the discriminant differential 6, for the example/class label pair (Xi, WI) is given

by

6,(XI1) g,-(X' 1) - maxgk(XJ18); W.' = W ,' (5.14)

6.V

Note that the set of all reduced discriminator output states corresponding to a specific value of 6, is given by

{.,,Tl : y, = y". + 6,} ; W j = W,, (5.15)

which, but for a constant, is identical to the expression for the reduced discriminant boundary in (5.9). Thus,

all examples that generate the same discriminant differential lie on a line that is parallel to the reduced

discriminant continuum in reduced discriminator output space.

Indeed, 6, is the Euclidean distance between the classifier's reduced discriminator output state and the

reduced discriminant boundary; equivalently, it is the projection of the classifier's reduced discriminator

output state onto the reduced discriminant continuum. Figure 5.2 illustrates these relationships for the

reduced discriminator output space and examples shown in figure 5. 1. The lower left part of the figure shows

the domain of 6,.: the diagonal gray lines at intervals of 0.2 project up onto reduced discriminator output

space and the reduced discriminant continuum. Note that these lines are parallel to the reduced discriminant

boundary.

Positive dlscriminant differentials 6, Indicate correct classifications: Positive values of 6, corre-

spond to correct classifications (i.e., classifier output states that lie in correct space). Non-positive values

of 6, correspond to incorrect classifications (i.e., classifier output states that lie in incorrect space).

Since the classifier represented in figure 5.2 has discriminator outputs that are bounded on [0,11, 6, is 0

bounded of [- 1,1 ].

The lower left of figure 5.2 also shows 0" [6., , the CFM of 6,., given a confidence parameter value

of 0.4. Since CFM is a strictly non-decreasing function of 6, and all reduced discriminator output states

generating a specific value of 6, lie on a line that is parallel to the reduced discriminant boundary, the CFM 0

objective function has contours of constant value that are parallel to the reduced discriminant boundary.
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Figure 5.2: An illustration of the discriminant differential ,.and its relationship to reduced discriminator
output space. Examples that generate the same discriminant differential lie on a line that is parallel to thereduced discriminant boundary. Since CFM (i.e., *" [6, i,] ) is a strictly non-decreasing function of 6, the

contours of constant CFM lie parallel to the reduced discriminant boundary -- a necessary characteristic of
the monotonic objective function.
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5.3 Objective Function Monotonicity and Learning Efficiency

The objective function must be monotonic if it is to engender efficient learning regardless of the choice of

hypothesis class.

Definition 5.10 A monotonic objective function: A monotonic objective function is always a strictly

decreasing (or increasing)function of the classifier's empirical training sample error rate.

Remark: If the monotonic objective function is a strictly decreasing function of the classifier's empirical

training sample error rate (e.g., CFM), then learning is accomplished by maximizing the objective function

with respect to the discriminator parameters, given the training sample. If the monotonic objective function

is a strictly increasing function of the classifier's empirical training sample error rate (e.g., one minus

CFM), then learning is accomplished by minimizing the objective function with respect to the discriminator

parameters, given the training sample.

A necessary condition for monotonicity: We use the notation 4) (Y) to denote the value of the objective

function, given the discriminator output state Y. In order for 4) to be monotonic on Y, it must exhibit a

more optimal value for every discriminator output state in correct space than it exhibits for any value in

incorrect space. Mathematically, t) must satisfy

t (Y) is more optimal than 4t (Y') V(Y,Y') ; Y E Y' E (5.16)

in order to be monotonic on Y. We stress that (5.16) is a necessary condition for monotonicity, but it is not

sufficient. The sufficient conditions for true monotonicity are discussed in section 5.3.6. 0

Clearly, (5.16) must hold if the objective function is monotonic, otherwise some discriminator output states

in correct space will generate less optimal values of the objective function than other output states in incorrect

space. If 4) fails to satisfy (5.16) it is -urely non-monotonic. 0

Definition 5.11 A non-monotonic objective function: A non-monotonic objective function is not always

a strictly decreasing (or increasing)function of the classifier's empirical training sample error rate.

Error measures are non-monotonic because their contours of constant value are not parallel to the

discriminant boundary. They become increasingly non-monotonic - and probabilistic learning becomes

increasingly inefficient - as the number of classes C increases. In order to prove this, we need to define

some sub-sets of discriminator output space, define some associated measures, and present a few lemmas.

We provide examples in support of the definitions. These examples are associated with a classifier having 0

C = 2 discriminant functions on the space Y = VI = O,h = 112; the classifier learns probabilistically
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via the MSE objective function, and is illustrated in figure 5.3. Contours of constant MSE are projected onto

discriminator output space, forming the concentric circular arcs in the figure.

Cardinality: We denote the cardinalit), of a set (i.e., the number of elements in the set) by I 1. When the set

is an uncountable space - as Y is in (5. 1) - we express cardinalities as volumes. Note that

1Yl = (i - 1)C, (5.17)

given Y in (5.1).

Definition 5.12 Correct fraction of discriminator output space CY: We denote the correct fraction of

discriminator output space by C.F. If we think of discriminator output space and its associated sub-spaces as

sets of points, CF is the ratio of two cardinalities associated with two sets: the numerator is the cardinalit),

of the set of all discriminator output states in correct space Yo,rra; the denominator is the cardinality of

discriminator output space Y.

CF- ! lYC,?,•dI (5.18)
IYI

Lenmma 5.1 The correct fraction of discriminator output space Y,,,, decreases as C for all C >_ 2.

Proof : Given the expression for correct space in (5.12), its cardinality (i.e., volume) is given by

IYcarred'I j" /' da1 *... dac..I dy.,

c -I inteSra terms

( -C (h c (5.19)

where a, ... ac-I are simply the C - I dummy variables of integration for the discriminator outputs not

associated with y,. By (5.1) and (5.17) - (5.19), CU is therefore

0I
CF = (5.20)

Example 5.6 For the C = 2-class task depicted in figure 5.3, correct space comprises one half of

discriminator output space (i.e., CF = I = ½ ).

C
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Definition 5.13 Incorrect fraction of discriminator output space IF: We denote the incorrect

fraction of discriminator output space by I.F. It is the ratio of two cardinalities: the numerator is the

cardinality of the set of all discriminator output states in incorrect space Yi.,,ec the denominator is the

cardinality of discriminator output space Y.

lY'

or, equivalently.

." = I - CT (5.22)

Lemma 5.2 The incorrectfraction of discriminator output space Yincnea increases as c for all C > 2.

Proof: The proof follows immediately from (5.20) and (5.22). I

Example 5.7 For the C = 2-class task depicted in figure 5.3, incorrect space comprises one half of

discriminator output space (i.e., XT = c - 1

Definition 5.14 Non-monotonic correct fraction of discriminator output space CFY-, 0 : We denote

the non-monotonic correct fraction of discriminator output space by C-Fo,,,. It is the ratio of two

cardinalities: the numerator is the cardinality of the set of all discriminator output states in correct space

omra for which there is at least one discriminator output state in incorrect space Y,ncorre that generates

a more optimal objective function value; the denominator is the cardinality of discriminator output space.

CF____ Y : Y E Ycor,, nl 3Y' E Yi., coc, s.t. PZ,(Y) is less optimal than -t (Y')}I

(5.23)

Example 5.8 For the C = 2-class task depicted in figure 5.3, the non-monotonic region of correct space is

the light gray shaded region below and to the right of the discriminant boundary. The fraction of discriminator

output space that this region encompasses is CF'-.m, ,: in this particular case, C..",,. Lo 0.107.

Definition 5.15 Monotonic correct fraction of discriminator output space Cff,, 0 : We denote the

monotonic correct fraction of discriminator output space by C.F,r,,,. It is the ratio of two cardinalities: the

numerator is the cardinality of the set of all discriminator output states in correct space Y"', for which

all discriminator output states in incorrect space Yc,,a generate less optimal objective function values;

the denominator is the cardinality of discriminator output space.
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( { Y : Y Ycorrec, n 4I (Y) is more optimal than i (Y") V)Y" E incorre} (.
C Mono - yl jnorc (5.24)

or, equivalently,

CF."',, = CFr - CF•-. (5.25)

Example 5.9 For the C = 2-class task depicted in figure 5.3, the monotonic region of correct space is

the unshaded region in correct space (i.e., the unshaded region below and to the right of the discriminant

boundary). The fraction of discriminator output space that this region encompasses is Cmmo: in this

particular case, CF.,.o, = CF - C-,,,, 5_- 0.393.

Definition 5.16 Non-monotonic incorrect fraction of discriminator output space , We

denote the non-monotonic incorrect fraction of discriminator output space by .. ,,. It is the ratio of two

cardinalities: the numerator is the cardinalily of the set of all discriminator output states in incorrect space

Yi, ,a for which there is at least one discriminator output state in correct space Yc,,,ac that generates a

less optimal objective finction value; the denominator is the cardinalit, of discriminator output space.

{Y : Y E yi, n, 3 Y"' E Y,,e s.t. -t (Y) is more optimal than t (Y"')}

(5.26)

Example 5.10 For the C = 2-class task depicted in figure 5.3, the non-monotonic region of incorrect space

is the dark gray shaded region above and to the left of the discriminant boundary. The fraction of discriminator

output space that this region encompasses is IF., : in this particular case, IL-",,, - 0.285.

DefinitionS.17 Monotonic incorrect fraction of discriminator output space IF,,., 0 : We denote the

monotonic incorrect fraction of discriminator output space by IF,,,. It is the ratio of two cardinalities:

the numerator is the cardinality of the set of all discriminator output states in incorrect space Yi.w,,,,v

for which all discriminator output states in correct space Y,,• generate more optimal objective inction

values; the denominator is the cardinality of discriminator output space.

. (, • {Y: YE y ,,fr,l• $- (Y"") is more optimal than 0 (Y) VY"" E Yc,,,}

lY'
(5.27)
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or, equivalently,

IYM,,O. = IF - IY-. (5.28)

Example 5.11 For the C = 2-class task depicted in figure 5.3, the monotonic region of incorrect space is

the unshaded region in incorrect space (i.e., the unshaded region above and to the left of the discriminant

boundary). The fraction of discriminator output space that this region encompasses is IY,,,, in this

particular case, IY,,,,o = IT - I.-v,,, L- 0.215.

It should be clear from definitions 5.14 -5.17 that the monotonic and non-monotonic fractions of
discriminator output space sum to one as follows:

I.-..mono + l-rnonn + C/-..mona + Cmono = 1 (5.29)

"F" CF

Definition 5.18 Monotonic fraction of discriminator output space .MY: We denote the monotonic

fraction of discriminator output space by .MY. It is the sum of the monotonic correct and incorrectfractions:

MY - I.Yo'o + CYm.0 . (5.30)

s.t. 0 < MY < I

Example 5.12 For the C = 2-class task depicted in figure 5.3, the monotonic region of discriminator

output space is the unshaded region (i.e., the combined unshaded regions on both sides of the discriminant

boundary). The fraction of discriminator output space that this region encompasses is MY: in this particular

case, MY L" 0.608.

We measure an objective function's monotonicity - or lack thereof - by its monotonic fraction MY,

given discriminator output space Y. If the objective function is monotonic, the monotonic fraction .MY

is unity; likewise, the monotonic fractions of incorrect (IY,,o,,) and correct (C.,,,,0 ) spaces are equal to

Z" and CF., respectively. If the objective function is non-monotonic, M.Y is less than unity; likewise,

".. and/or CF",. are less than Z.Y and/or CF. respectively. Simply put, objective functions with

lower values of MY., I..,,,, and C.m.,O are increasingly non-monotonic.

Intuitively, one can view the monotonic fraction MY as a kind of correlation coefficient between the

act of optimizing the objective function and the act of minimizing the classifier's empirical training sample

error rate, absent any specific knowledge regarding whether or not the classifier's hypothesis class is a

proper parametric model of the feature vector. If MT = I, every discriminator output state in correct

space generates a more optimal value of the objective function than any output state in incorrect space; as

a result, optimizing the objective function is monotonically related to minimizing the training sample error
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Figure 5.3: The MSE objective function is non-monotonic. Example 3 generates higher (less optimal)
MSE than example 2, even though example 3 is correctly classified, whereas example 2 is not. For every
discriminator output state in the light gray shaded region of correct space there is at least one output state in the
dark gray shaded region of incorrect space with lower MSE. The figure depicts discriminator output space for
a hypothetical C = 2-class task in which the discriminator's outputs are bounded on Y = [I = 0, h = 1]2.
Since the classifier has two discriminant functions, discriminator output space and reduced discriminator
output space are one and the same.

rate, regardless of the choice of hypothesis class. If, on the other hand, MT < I, some discriminator

output states in correct space generate less optimal values of the objective function than other output states

in incorrect space; as a result, optimizing the objective function does not necessarily minimize the training

sample error rate - a phenomenon we discuss further in section 5.3.5.

5.3.1 MAE is Non-Monotonic

The mean absolute error (MAE) measure4 discussed in section 2.3.3 is the sum of the absolute difference

between each discriminator output y, and its target value T-:

4 Recall that the mean absolute error measure is known by other names such as least absolute error (LAE) and least absolute deviation
(LAD, e.g., 19]).
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C

MAE = il (5.31)
i=1

Given the training example/class label pair (Xi, Wi) , the target value for the output y, (corresponding to

the class label WJ ) is D, and the target values for all the other outputs are --D:

h -• Y, W = =W ()i s.. Ti =D = h
D

ý[yi, i]s. = (5.32)

-D

In the following arguments, we assume that y,. is always yt in order to simplify notation. Under this

condition, (5.31 ) and (5.32) reduce to

C

MAE = h-y,+Z(v,-l)
j=-2

c

= h-y,-(C I + Ev, (5.33)
j=2

The maximum MAE generated by a correctly classified example of W, occurs at the vertex of correct

space farthest from Y,,, . This is the output state in which y'I = h and all the other discriminator outputs

are smaller by an infinitesimally small positive value c:

max MAE correct = lim h- h +F (h ) - " e> 0 (5.34)C---O+ W- -
Y1 jý=-2

< (C - 1)(h-t1) (5.35)

Thus, (5.35) defines the "inner" boundary value of MAE in monotonic incorrect space. If X' is an example

of W, , it is surely misclassified if MAE > (C - 1) (h - I): by (5.33) and (5.35), the example is surely

misclassified if

C
Y 15-< E YJ - (C - 2).- h (5.36)

j=-2

The minimum MAE generated by an incorrectly classified example of W, occurs when y,. (i.e., y' ) is

infinitesimally smaller than T, and all the other discriminator outputs are minimal. By (5.33),
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minMAEincorrect = lim h - Y' + il + -I; F > 0

.Yr

= h - I (5.37)

Thus, the minimum value of MAE for an incorrectly classified example occurs when yr (i.e., Y, ) equals ,-,

and (5.37) defines the "outer" boundary value of MAE in monotonic correct space. If XJ is an example of

W. , it is surely' correctly classified if MAE < (h - 1) such that

C

y I> E yj - (C - 2) • 1 (5.38)
j=2

Note that when C = 2, (5.33) reduces to

MAEc= 2 = h - il + Y2 -1

Y, T, (5.39)

constallt

and, by (5.38), a training example is surely correctly classified if 6, > 0. MAEc = 2 is therefore a strictly

decreasing function of 6•. In this sense, the MAE objective function is a special (and so far as we know,

unique) error measure: when the discriminator has two discriminant functions associated with a C = 2-class

learning/classification task, the contours of constant MAE lie parallel to the discriminant boundary, as shown

in figure 5.4. Since there is no discriminator output state in correct space that generates greater MAE than

any discriminator output state in incorrect space, (5.16) is satisfied, and the monotonic fraction - which we

denote by MAE M•(C = 2) - is unity.

However, the MAE objective function is, by (5.16), (5.35), and (5.37), non-monotonic for C > 2. Indeed,

section . I proves that the monotonic fractions of the MAE objective function decrease with increasing values

of C according to the following formulae, in which F(-) denotes the gamma function (e.g., [80, pp.

A76-A77J):

0I
MAEm.F..,a(C) = (5.40)Tic + i)

MAEC.F.,,o(C) = 1 (5.41)Tic + 5)

2.. MAE. F(C) = r(C + 1) (5.42)

rS +I
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[Example2 1

I ,

Example 3 ] /

Figure 5.5: The MAE objective function is increasingly non-monotonic as C increases. Output Yl is y,,
the output corresponding to the class label for the three training examples shown. Contours of constant MAE
are projected onto the bounding faces of discriminator output space. White denotes the monotonic regions
of discriminator output space, light gray denotes the non-monotonic region of correct space, and dark gray
denotes the non-monotonic region of incorrect space.a Example I is correctly classified, yet it generates a
higher (less optimal) value of MAE than examples 2 and 3, which are both incorrectly classified. Left: The
discriminator output space from the perspective of Y,,,. Right: The discriminator output space from the
perspective of . The monotonic fractions of incorrect and correct spaces are •, so the monotonic
fraction of discriminator output space is 13

"The light gray shading underneath the cubic form of the discriminator output space is an imaginary shadow. it helps to clarify the
cuhe's orientation.

Example 5.13 Figure 5.5 illustrates the non-monotonic nature of MAE when C = 3. The figure

shows two views of discriminator output space (which is Y = [I = 0, h = I]- for the purpose of

illustration). As in previous figures, white denotes the morotonic regions of discriminator output space,

light gray denotes the non-monotonic region of correct space, and dark gray denotes the non-monotonic

region of incorrect space. The left-hand figure shows discriminator output space from the perspective

of Y.,,,, = (YI = ly2 = 0,y3 = 0); the right-hand figure shows discriminator output space from

the perspective of Yi,,, = (YI = 0,y2 = 1,3 = I). By (5.40) -- (5.42), MAEL-,F,. 0 (3) =

MAECFmr.(3) = I , and MAE.MF(3) = .. Example I (i.e., X 1 generates a discriminator output state

of Q(X' 11) = Y- = (I,.9,.9), so it is correctly classified; MAE(YI) = 1.8. Example 2 generates a
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discriminator output state of y 2 = (.8,.2, 1), so it is incorrectly classified; MAE(Y 2 ) = 1.4. Example 3

generates a discriminator output state of V = (.4,0,.6), so it is incorrectly classified; MAE(Y3 ) = 1.2.

Thus, we have the particularly undesireable situation in which the correctly classified example generates a

less optimal value of MAE than the two incorrectly classified examples generate - a clear manifestation of

the MAE objective function's non-monotonic nature (C > 3).

By (5.40) - (5.42), all the MAE monotonic fractions go to zero as the number of classes C grows large:

limc-.o, MAEI.,,,,,,,,(C) = 0

limc_.. MAEC.7-,,,,,,(C) = 0 (5.43)

limc-, MAE M•F(C) = 0

Moreover, MAEM.Y(C), MAECYm.,.(C), and MAEI.Fmo.o(C) decrease super-exponentially as C

increases. For example, when the number of classes is ten, the monotonic fractions are quite small:

MAEM•F(I0) = 5.51 x 10-7

MAEI.Fmo,,,,(0) = MAECF,,,,o(10) = 2.75 X 10-7

5.3.2 MSE is Non-Monotonic

The mean squared error (MSE) measure discussed in section 2.3.2 is given by

C

MSE = j , (5.45)
i= I

where

h - = i = Wi s.t. ri = D = h

i.',= (5.46)

2 ) W W, st. r = --D =

As in the preceding section, we assume that y, is always yn in order to simplify notation. Under this

condition, (5.45) and (5.46) reduce to

MSE = • (h - y,) 2 + 1( ) - l)2 (5.47)
i=2
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The maximum MSE generated by a correctly classified example of W, occurs at the vertex of correct

space farthest from Yc,,, . This is the output state in which yj = h and all the other discriminator outputs

are smaller by an infinitesimally small positive value E:

max MSE correct = lim I (h-c) - 1 >0 (5.48)
c+o+ 2(.4,4-vlj=2 

Y

(C - )(h - 1)2 (5.49)
2

Thus, (5.49) defines the "inner" boundary value of MSE in monotonic incorrect space. If XJ is an example

of W., it is surely misclassified if MSE > -; (h _ 1)2: by (5.47) and (5.49), the example is surely

misclassified if

C
Y• _< h - (C - 1)(h - 1)2 E (Y• _ 1)2] (5.50)

The minimum MSE generated by an incorrectly classified example of W3, occurs when y, (i.e., yj ) is

infinitesimally smaller than T, and all the other discriminator outputs are minimal. By (5.47),

-- +0. 2 
2- + 

-L>*min MSE incorrect = lim (h3- II h1 'F > Ž0
-+o 2

I, , \2+ 2

= [(h-y,)2 +(y,-- , (5.51)

which is minimal when

y = = -- (5.52)
V-1 2

Yl

Thus, (5.51 ) reduces to

min MSE incorrect = - (h - 1)' (5.53)
4

Equation (5.53) defines the "outer" boundary value of MSE in monotonic correct space. If X' is an example

of W1 , it is surely correctly classified if MSE < 1 (h - /)2 such that
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y, > h - (h - )2 -1 (Yj -1 )2 (5.54)
i=2

The MSE objective function is, by (5.16), (5.49), and (5.53), non-monotonic for C > 2. Indeed,

section 1.2 proves that the monotonic fractions of the MSE objective function decrease with increasing values

of C according to the following formulae:

MSEC.F,,monn(C) < (5.55)r(c + i)

MSE C.Fo.,(C) - (a)§
= c 1 (5.56)

MSEM (C) < + (5.57)
1q + 1) r(C + 1)

Note that (5.57) is loosely bounded from above by - 2 for both small and large C.

Example 5.14 Figure 5.3 illustrates the non-monotonic nature ofMSE when C = 2 (Y = [1 = 0,h = 112

for the purpose of illustration). By (5.56), MSEC.Y.,.•(2) = .393. The fraction MSEZY.T,(2) can

be computed exactly, obviating the need to use the less precise bound of (5.55): it is simply one fourth

the area of a circle of unit radius, minus one half (i.e., MSE1.F,,no(2) = .285). Thus, by (5.30),

MSEMY(2) = .678. Example I generates a discriminator output state of Y1 = (,0), so it is

correctly classified; MSE(Y') = 0. Example 2 generates a discriminator output state of y 2 = (.45, .55),

so it is incorrectly classified; MSE(Y 2) = .30. Example 3 generates a discriminator output state of

y3 = (.93,.85), so it is correctly classified; MSE(Y3 ) = .36. The MSE generated by example I is

minimal. However, the incorrectly classified example 2 generates a more optimal value of MSE than the

correctly classified example 3 generates...

Example 5.15 Figure 5.6 illustrates the non-monotonic nature of MSE when C = 3. The figure shows two

views of discriminator output space (which is Y = [I = 0, h = I]3 for the purpose of illustration). The

left-hand figure shows discriminator output space from the perspective of Yc,,, ; the right-hand figure shows

discriminator output space from the perspective of Yi,r,•. By (5.55) -- (5.57), MSE 1.."u,(3) < 6 '

MSECY'JWS(3) = .185, and MSE.MY(3) < .352. Example I generates a discriminator output state of

Y- = (1, .922, .922), so it is correctly classified; MSE(Y') = .85. Example 2 generates a discriminator
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SExample 2-1

Example I

00

Example3]

Yrccrrrf!

Figure 5.6: The MSE objective function is increasingly non-monotonic as C increases. Output yl is YT, the
output corresponding to the class label for the three training examples shown. Contours of constant MSE
are projected onto the bounding faces of discriminator output space. White denotes the monotonic regions
of discriminator output space, light gray denotes the non-monotonic region of correct space, and dark gray
denotes the non-monotonic region of incorrect space." Example I is correctly classified, yet it generates a
higher (less optimal) value of MSE than examples 2 and 3, which are both incorrectly classified. Left: The
discriminator output space from the perspective of Yc,,,. Right: The discriminator output space from the
perspective of Yi,,,re,. The monotonic fraction of incorrect space is less than 1; the monotonic fraction of
correct space is .185; the monotonic fraction of discriminator output space is therefore less than .352.

"The light gray shading underneath the cubic form of the discriminator output space is an imaginary shadow; it helps to clarify the
cube's orientation.

output state of y 2 = (.508, .284, 1), so it is incorrectly classified; MSE(Y 2) = .66. Example 3 generates

a discriminator output state of Y3 = (.399,0, .601), so it is incorrectly classified; MSE(Y 3 ) = .36. Thus,

the correctly classified example generates a less optimal value of MSE than the two incorrectly classified

examples generate; like MAE, the MSE objective function is non-monotonic (C > 2).

By (5.55) - (5.57), all the MSE monotonic fractions go to zero as the number of classes C grows large:

limc-,o MSEZXm.mo,(C) = 0

limc-+, MSEC.F,,,(C) = 0 (5.58)

limcoo MSEM.F(C) = 0

Like their MAE counterparts, MSEMF(C), MSEC.F,,,O,,,(C), and MSE."mi,(C) decrease super-
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exponentially as C increases, although MSEM.F'(C) is 0 [[r(c + I)]'] whereas MAE.MY(C) is

0 [[r(C + 1)]-i]. Nevertheless, when the number of classes is ten, the monotonic fractions are still quite

small:

MSEIT o,0 .(10) < 2.75 x 10-7

MSEC.monn(lO) = 7.78 x 10- (5.59)

MSEMY(1O) < 7.81 x l0--

5.3.3 The Kullback-Leibler Information Distance is Non-Monotonic

The Kullback-Leibler information distance (a.k.a. cross-entropy - CE) discussed in section 2.3.2 is given

by

CE = j 7',TiJ (5.60) 0
i=1

where

-logyi - I WJ =WJ , =3Wi s.t T= D =h

(1Yi, i= (5.61)

-log (h_ -y.). W'#W 96 ,S.t. -T ,=D I

As in the preceding two sections, we assume that y, is always yV in order to simplify notation. Under this

condition, (5.60) and (5.61) reduce to

C

CE = -log(y, - 1) - 1 log(h - yj) (5.62)
j=2

The maximum CE generated by a correctly classified example of U), occurs at the vertex of correct

space farthest from Yc, This is the output state in which Yi = h and all the other discriminator outputs

are smaller by an infinitesimally small positive value e: 0

max CE correct = lim -log( h -1)- - 'log h-(_()h , > 0 (5.63)
.vJ=2 •J

< 00 (5.64)
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Thus, the "inner" boundary value of CE in monotonic incorrect space is infinite. That is, an example is

never surely misclassified, since a correctly classified example can generate an infinite value of CE. As a

result, the monotonic fraction of incorrect space is zero for all C > 2:

CEI T..OC = 0 VC > 2 (5.65)

The minimum CE generated by an incorrectly classified example of W, occurs when y, (i.e., yJ ) is

infinitesimally smaller than 7, and all the other discriminator outputs are minimal. By (5.62),

min CE incorrect =

lim -lo - log It(C -2) log (h-1) c > 0e-+"0 ) ( h i

= -log(yi - 1) - log(h - yi) - (C - 2) . log(h - 1), (5.66)

which is minimal when

h+l
y - = 2 (5.67)
)'102

Thus, (5.66) reduces to

min CE incorrect = -C - log(h - 1) + log(4) (5.68)

Equation (5.68) defines the "outer" boundary value of CE in monotonic correct space. If XV is an example

of W , , it is surely correctly classified if CE < -C • log (h - 1) + log(4). Assuming a logarithmic basis

of b (i.e., the notation log actually denotes log,,), an example is surely correctly classified when

y, > I + b [C w, -) - - y,) - W(4)] (5.69)

The CE objective function is, by (5.16), (5.64), and (5.68), non-monotonic for C > 2. Indeed,

CEIZYAm,,(C) = 0 for all C > 2, by (5.65), and section 1.3 proves that the two other monotonic fractions

of the CE objective function decrease with increasing values of C according to the following formulae when

Y = t = O,h = 11c:

CEM77(C) = CEC.F,,,,,,o(C) = I - A. - E l [ln(A)]';

(5.70)
V(C)

0 1 Oh=Ie, (+)
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It is straightforward to prove the following relationship

lir ((C) = exp[-ln(A)] (5.71)

so all the CE monotonic fractions go to zero as the number of classes C grows large:

limc. CEZ:.Fmg(C) = 0

CEC.F.or(C) = 0 VC > 2 (5.72)

limco• CEM.F(C) = 0

Expressions for CE MY(C) and CE C.F,,,o (C) are considerably more cumbersome for the more general

discriminator output space Y = [1, hIc (see section 1.3). Although the specific values of CE M.F(C) and

CEC.F.,4(C) change with I and h, the general dependence on C is well-described by (5.70) as long as I

and h are finite - a constraint that is consistent with (2.60). For these reasons, we omit the more general

expressions. 0

Example 5.16 Figure 5.7 illustrates the non-monotonic nature of CE when C = 2 (Y = [I = 0,h = 112

for the purpose of illustration). The logarithmic basis of (5.61) is 10 (i.e., log(- ) denotes iog10(• ) in

(5.61)). By (5.70), the monotonic fractions are LL.L.,-,m,o(2) = 0 and CEMY(2) = CECYB.' (2) =

.403. Example I generates a discriminator output state of Y' = (1.0), so it is correctly classified;

CE(Y') = 0. Example 2 generates a discriminator output state of y 2 = (.45,.55), so it is incorrectly

classified; CE(Y 2) = .69. Example 3 generates a discriminator output state of y 3 = (.93,.85), so

it is correctly classified; CE(Y3) = .86. The CE generated by example I is minimal. However, the

incorrectly classified example 2 generates a more optinial value ot CE than the correctly classified example 3

generates...

Example 5.17 Figure 5.8 illustrates the non-monotonic nature of CE when C = 3. The figure shows

two views of discriminator output space (which is Y = [I = 0, h = I113 for the purpose of illustration).

Again, log(.) denotes 1oglo(. ) in (5.61). The left-hand figure shows discriminator output space from

the perspective of Yc,, ; the right-hand figure shows discriminator output space from the perspective of

Yb.,,a. By (5.70), CEIY, (3) = 0 and CE.MY(3) = CEC.F..-,(3) = .163. Example I generates

a discriminator output state of Y' = (1 776, .776), so it is correctly classified; CE(Y') - 1.3. Example 2

generates a discriminator output state of y 2 = (.387, 0, .613), so it is incorrectly classified; CE(Y2 ) - .83.

Thus, the correctly classified example I generates a less optimal value of CE than the incorrectly classified

example 2 generates; like MAE and MSE, the CE objective function is non-monotonic (C > 2).

Given (5.71), (5.70) can also be expressed as
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Disciiao Oupu Spc (CE.C2

10CE 
=.8

IC .

0.0~

0.0 0.5 1.0 * Training Example

Figure 5.7: The Kuliback-Leibler information distance (CE objective function) is non-monotonic. Example 3
generates higher (less optimal) CE than example 2, even though example 3 is correctly classified, whereas
example 2 is not. For every point in the light gray shaded region of correct space there is at least one
point in the dark gray shaded region of incorrect space with lower CE. The figure depicts discriminator
output space for a hypothetical C = 2-class task in which the discriminator's outputs are bounded on
Y = [I = 0,h = 112. Since the classifier has two discriminant functions, discriminator output space and
reduced discriminator output space are one and the same.

0

CEM.F(C) = CEC.F..,(C) =A - -1
J=C "

[-In(•)]c(5.73)

(C + (l)

Y = V! = O,h = 1]c , A = V+)• = I

The upper bound of (5.73) is tight for small C and loose for large C. Thus, the CE objet tive function is like its

MAE and MSE counterparts: CEM.F(C) and CEC.Fm,,(C) decrease super-exponentially as C increases,

although CEM.F(C) isO [- In(A)]'c [[p(C + 1)] -] whereas MAE.MY(C) is o [[r(c + I)]-' and
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) .0
54.0

0.0 Y 2•0.

Figure 5.8: The CE objective function is increasingly non-monotonic as C increases. Output Yl is yT,
the output corresponding to the class label for the two training examples shown. Contours of constant CE
are projected onto the bounding faces of discriminator output space. White denotes the monotonic regions
of discriminator output space, light gray denotes the non-monotonic region of corrnct space, and dark gray
denotes the non-monotonic region of incorrect space." Example I is correctly classified, yet it generates a
higher (less optimal) value of CE than example 2, which is incorrectly classified. Left: The discriminator
output space from the perspective of Yc, Right: The discriminator output space from the perspective of
Yjco. . The monotonic fraction of incorrect space is zero; the monotonic fraction of correct space is .163;
the monotonic fraction of discriminator output space is therefore .163.

'The light gray shading underneath the cubic form of the discriminator output space is an imaginary shadow. it helps to clarify the
cube's orienaton. 0

MSE4M"(C) is o [1r(c + 1)]-']. When the number of classes is ten, the monotonic fractions are quite

small:

CEM '(lO) = CECY•'.(l0) = 2.06 x 10-6

CEIY,..' (10) = 0; (5.74)

Y = V , = 0 h 1110

5.3.4 The General Error Measure is Non-Monotonic

The findings of the preceding three sections are directly linked with the section 3.4 proofs that error measures

engender inefficient learning. Specifically, (3.40) proves that minimizing the general error measure does

not minimize the classifier's error rate. Thus, (3.40) proves that error measures fail to satisfy (5.16) and •

definition 5. 10: they are non-monotonic.
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The section 3.6 exception to the rule that probabilistic learning is inefficient does not contradict

our assertion herein that error measures are non-monotonic. When the hypothesis class is a proper

parametric model of the feature vector, probabilistic learning via the error measure that generates maximum-

likelihood estimates of the discriminator's parameters is efficient. Under these circumstances, the functional

characteristics of the discriminator's hypothesis class compensate for the non-monotonic nature of the error

measure (see below); the error measure itself remains non-monotonic, independent of the choice of hypothesis

class.

5.3.5 The Link Between Objective Function Monotonicity and Learning Efficiency

The monotonic objective function engenders asymptotically efficient learning, regardless of the choice

of hypothesis class (section 3.3). The non-monotonic objective function engenders inefficient learning

if the hypothesis class is improper (section3.4); if the hypothesis class is proper, there may be an error

measure that induces efficient learning, despite its non-monotonic nature (section 3.6). That is, under proper

conditions the non-monotonic error measure induces efficient learning because the discriminator's proper

nature compensates for the small value of M.'. In some cases (see below) the "proper" discriminator's

correct output states are constrained to lie in the monotonic region of correct space. It remains an open

question whether this is always the case when the hypothesis class constitutes a proper parametric model of

the feature vector.
Under improper conditions the discriminator's functional properties fail to constrain the discriminator's

correct output states to lie in the monotonic region of correct space, and the small value of MY results

in inefficient learning. Indeed, as MT -+ 0, the objective function's value during learning may tell us

absolutely nothing about the classifier's empirical training sample error rate if the hypothesis class is not

the proper parametric model of the feature vector and the error measure is not the one associated with the

maximum-likelihood probabilistic learning procedure described in hypothesis 3.1 (page 77).

Chapter 4 clearly illustrates the three fundamental scenarios we address in chapter 3 and this section:

A non-monotonic objective function paired with a proper parametric model can Induce efficient

learning - The discriminant fanctions of the partially parametric proper model in section 4.2 are given

by (4.4). These equations guarantee that the discriminator output state lies on the discriminant continuum

(definition 5.1), regardless of the discriminator's parameterization. This constraint compensates for the

non-monotonic nature of the error measures used for probabilistic learning because the discriminator simply

cannot produce output states that lie in the non-monotonic region of correct space. As a result, the hypothesis

class's functional properties in (4.4) ensure that (5.16) is never violated. This ensures that probabilistic

learning via the general error measure is asymptotically efficient. Moreover, if the error measure associated

with the maximum-likelihood learning procedure defined in hypothesis 3.1 exists, it will induce efficient

learning for small sample sizes as well. This is precisely the scenario we find in section 4.2.
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A non-monotonic objective function paired with an improper parametric model always induces

inefficient learning - The discriminant functions of the improper parametric model in section 4.3 are

given by (4.32). These equations do not guarantee that the discriminator's correct output states will always lie

in the monotonic region of correct space. As a result, the hypothesis class's functional properties fail to ensure

that (5.16) is never violated. This ensures that probabilistic learning via the general error measure is inefficient. .

Indeed, by (5.57), MSEI.,,,,(3) < 1, MSEC.",,,,,,(3) = 0.185, and MSEM4.F(3) < 0.352, and the

MSE-generated minimum-complexity polynomial classifier of section 4.3 exhibits an 18% discriminant bias

for both small and large training sample sizes.

A monotonic objective function paired with any hypothesis class always induces asymptotically efficient

learning - Since the CFM objective function is monotonic (see section 5.3.6 below), definition 5.10 and

(5.16) are always satisfied, regardless of the hypothesis class's functional properties. As a result, differential

learning is always asymptotically efficient - a fact that is demonstrated in the experiments of chapter 4 and

part II.

5.3.6 CFM is Monotonic

As we stated earlier, if the objective function is to be monotonic, (5.16) must hold. The CFM objective

function always satisfies (5.16), since it is a function of only two discriminator outputs (y, and T)
regardless of the number of classes C. Thus, the CFM generated by a correctly classified example is always

greater than the CFM generated by an incorrectly classified example (e.g., see figure 5.2.) This statement is

true for any and all choices of the CFM confidence parameter Vi,. As a result,

CFMIFNInO(C) = = - V C > 2

CFMCY,..O(C) = CY = 1C > 2 (5.75)

CFM.MY(C) = I VC > 2

So far we have focused on whether or not the objective function's contours of constant value are parallel to

the discriminant boundary. Although this condition - expressed mathematically in (5.16) - is a necessary

one for monotonicity, it is not sufficient to satisfy definition 5.10. The reason for this lies in the difference

between an objective function's being monotonic for a single example, versus its being monotonic for all

examples in the training sample. This latter kind of mtnotonicity is true monotonicity.

CFM Is Truly Monotonic

In the case of CFM, (2.102) and (2.104) must also be satisfied in order for CFM to be truly monotonic, thereby-0

inducing asymptotically efficient learning. We clarify this notion of true monotonicity with a hypothetical
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example, showing that CFM is non-monotonic when (2.104) is violated, but monotonic when (2.104) is

satisfied. A similar illustration can be made regarding the constraint of (2.102).

Consider a two-class pattern recognition task for which the feature is a random scalar x. The class prior

probabilities are

PM(WOI) = Pw.(W, 2) = (5.76)

and the class-conditional pdfs of x are given by

P* w (xIWI) = 6(x+ 1)

P.,JI (xILW 2) = .- 6(x + .9) + .9 6(x - I),

where 6(- ) denotes the Dirac delta function (e.g., [80, pg. 266]). The a posteriori class probabilities are

therefore

PwI,(WIIx) = C(x+ 1) (5.78)

PwI,(W2Ix) = 6(x + .9) + 6(x - 1)

Figure 5.9 depicts the class-conditional pdf- class prior probability products as well as the a posteriori

class probabilities of x. The light blue arrows depict the Dirac delta functions associated with class W.,,

and the red arrows depict those associated with class W 2 . The colored circles in the a posteriori class

probability plots indicate the values of x for which Pjv., (W II x) (light blue) and PwJ, (W2 Ix) (red) are

zero. Obviously, the two classes that x can represent are linearly separable: a linear classifier need only form

0 a boundary on the open interval (- I, - .9), which constitutes the Bayes-optimal class boundary

- < B1 ,2 8aw., < -. 9 (5.79)

This open interval is depicted by the swath of gray shading in figure 5.9.

* We employ a minimum-complexity linear classifier5 with the discriminator Q(xl) =

{g 1(xI 0), g2(x 10)}; the discriminant functions of Q(x 10) are given by

gi(x19) = - x + 0o (5.80)

92(Xle) = -g,(xIO) = IX - 00,0 2

so the discriminator's parameter vector reduces to the single paran-eter 00. By convention, we sometimes

use the more general vector notation 0, assuming that the reader understands the equivalence between 9

and 0o in this particular example. We denote the discriminator parameterization that maximizes CFM by 0;.

Given the discriminator in (5.80) and the parameter space 19 = R, discriminator output space is Y = R2.

-'The complexity measure is the classifier's number of parameters. which is one
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Learning is simply a search for 06 over e (i.e., dhL-" domain of 0o), given a specific value of the

CFM confidence parameter Vt. Figure 5.10 illustrates this search space: CFM is plotted as a function of

the discriminator's single parameter 0o and the CFM confidence pararneter Vt'. Specifically, the plot shows

the CFM generated by an asymptotically large training sample, given the discriminator !(xI 6) and t!V:

lim,.-.•,. CFM (Sn 10). The figure's color coding emphasizes the value of V/': magenta indicates Vt = I

4nd blue indicates V/' -+ 0+ ; intermediate values of V]' correspond to a natural progression from magenta

to blue via the intermediate color yellow. The black contours on the figure denote the value of CFM as a

function of Vt, for fixed increments of 00.

Given 9(x 10) in (5.80), the class boundary it forms is

B1 ,2 = 2 00 (5.81)

It should be clear from the probabilistic nature of x illustrated in figure 5.9 that the classifier with the

discriminator described by (5.80) will correctly classify all examples of x if

g1(xi1) = g2(x10) = 0 forsomex E (-I, - .9) (5.82)

When (5.82) is satisfied, the differentially generated class boundary is Bayes-optimal:

-. 5 < o5 < -. 45
(5.83)

s.t. 131,2 cF = B5,2 Bayes E (-I, - .9)

The key question is, for what values of i/, is CFM monotonic: that is, what values of i/I guarantee

that maximizing lim CFM (Sn 10) minimizes the classifier's error rate P, (C 119) by generating the

parameterization 08 of (5.83)? The answer: those values of [" for which (2.102) and (2.104) are satisfied.6

Maximizing CFM subject to the constraints of (2.102) and (2.104) minimizes the classifier's empirical

training sample error rate and, by the proof of section 3.3, induces asymptotically efficient learning. When

(2.102) and/or (2.104) are not satisfied, maximizing CFM is not guaranteed to minimize the classifier's

empirical training sample error rate: CFM is non-monotonic and may ine- e inefficient lea- g.

Example 5.18 The largest positive discriminant differentials that Q(x 10) in (5.80) can generate for

examples of x = - 1 and x = -. 9 are

6 Section 7.4 describes a practical approach to differential learning via a scheduled reduction of the CFM confidence parameter. this
satisfies the upper bound constraints on V' imposed by (2.102) and (2.104).
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Figure 5.9: The simple two-class scalar feature discrimination task for which CFM is monotonic if and only if
c' < . I I. From top to bottom: the class-conditional density - class prior products 1),lW (x w1) " Pw(W• 1)
and pXiV (xI I2) " Pw(W2 ) ; PwVIl (L 1 Ix), the a posteriori probability of class W1 ; Pvl, (L02 Ix), the
a posteriori probability of class W2 . Two sets of linear discriminant functions are shown superimposed on
the a posteriori class probabilities of x: the magenta-colored functions are generated by maximizing CFM,
given the confidence parameter ,' = I ; the blue-colored functions are generated by maximizing CFM,
given the confidence parameter t.' .05. Note that classifier generated with t' = I incorrectly classifies
all examples of x = -. 9, so CFM is non-monotonic for u' = I, given x described by (5.76) - (5.78)
and the discriminator Q(xj 1) described by (5.80). However, when c' is reduced to a value of .05, the
classifier generated by CFM correctly classifies all examples of x. Indeed, CFM is always monotonic, given
a sufficiently small value of t.' -- a relationship formalized by the constraints of (2.102) and (2.104).
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1.0

'I,

"10

10.

Figure 5.10: The CFM (i.e., lim,_ CFM (S" 0e)) generated by an asymptotically large training sample
of the two-class random feature x described by (5.76) - (5.78): CFM is plotted as a function of the
single discriminator parameter 0o and the CFM confidence parameter t'. Given x and the simple linear
discriminator g(xI ) described by (5.80), the plot shows that CFM is monotonic if and only if t, is small
(boxed region). That is, the parameterization 0j that maximizes CFM also minimizes the classifier's training
sample error rate if and only if c, is sufficiently small.

1.0

CFM

Range of Bayes-Optimal Parameterizations

Figure 5.11: Details of the maximum CFM (i.e., max9 lim,_, , CFM (Sn 19) for small t ) generated by
an asymptotically large training sample of the two-class random feature x. The figure shows the boxed
region of figure 5.10 as it would appear viewed along an axis that is parallel to the c' axis (i.e., the image
plane of this figure is parallel to the CFM - 0(o plane in figure 5.10). CFM is plotted as a function of
the single discriminator parameter 0o : different contours represent different CFM functions of 0o, given
different values of the confidence parameter tc. The color coding of the contours denotes the value of c'
and corresponds to the scheme used in figure 5.10. The contours are in increments of .01, from .31 (green)
to .01 (blue); the lower-bound contour of the figure is c' = .002. The CFM objective function is, by
(2.104), guaranteed to be monotonic if t' < .05 -- an upper bound denoted by the white highlighted
contour of the figure. Note that CFM is maximized, given this value of t', for -. 478 < 0 _< - .467. Thus,
the differentially generated classifier ( u' < .05 ) yields Bayesian discrimination, by (5.83), since CFM is
maximal for 00 values that fall within the gray-shaded open interval (-.5, -.45).
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6
1(x = -- 10o = -. 475) = g1 (x = -I IOo = -. 475) - g2(x = -1i 00 = -. 475) = .05

.025 ".02-5

6 2(X -.910o -. 475) = g 2(x =-.9 1 Go = -. 475) -gI(x =-.9 1o = -. 475) = .05

.025 -. 02-1

(5.84)

By (2.104), VI, must therefore be no greater than .05 in order to guarantee that CFM is truly monotonic. If

we maximize lim_.+,, CFM (S" 10) using the synthetic CFM objective function described in appendix D

with 1/, = 1, 0• = -. 0125. One can see that that CFM peaks at this value of Oo in figure 5.10: the back

edge of the CFM function's magenta region corresponds to t!, = I, and it peaks at 0o = -. 0125. This

parameterization generates the magenta discriminantfunctions offigure 5. 10, which form the class boundary

131,2 CFU = -. 025 $ •1,2 Ba.eS. Thus, CFM is non-monotonic for 1[, = I, given x and C(x 10).

If we reduce i, to a small value, CFM becomes monotonic. Figures 5.10 and 5.11 illustrate this

transformation. Again, the color-coding offigure 5.10 reflects the value of 1k: large values of if correspond

to the magenta part of the image, intermediate values of V' correspond to the yellow part of the image, and

small values of ib correspond to the blue part of the image. CFM takes on a maximum value of - .95 for

all but small values of if', reflecting the linear classifiei's inability to learn that all examples of x = -. 9

are examples of class W 2 . As V' becomes small (i.e., .A I ), CFM takes on a maximum value of - I

for values of 0o corresponding to the boxed portion of the figure. Figure 5. 11 depicts this region in detail.

CFM is plotted as a function of the single discriminator parameter 0o, given small values of iVy. Different

contours in the figure depict different CFM functions associated with different values of Vi' from .31 (green)

to .01 (blue) in increments of.01: the bounding (i.e., outer-most dark blue) contour is for iV? = .002. One

can see from the figure that CFM is non-monotonic for 0I > . I I because it peaks at 0o > -. 45 ; therefore,

81,2 CFM 0 B|,2 eoe,-. However, for i' <_ .05 (the contour associated with 1P. = .05 is highlighted in
white), CFM is monotonic because it peaks between -. 478 <0; < -. 467; therefore, 13,2 CFM = 131,2 Bgr.s-

Given the parameterization 0; = -. 475 for V!, = .05, the blue discriminant functions offigure 5.9 result;

they form the class boundary 131,2 CFU = -. 95 = 13B,2 Bme•.o Thus, CFM is truly monotonic for iV, < .05,

given x and Q (x 10).

MAE is not truly monotonic for any C - It is interesting to note that minimizing the MAE of 9(x 1 e)

(i.e., minimizing Iim,,, MAE (S" 90) for D = I and -,D = 0) generates the "optimal" parameterization

-. 5 < 65 < .5 (we omit the details of the analysis in the interest of brevity). All parameterizations in this
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interval exhibit the same (minimum) value of MAE = .5, but the classifier's error rate is minimized only if

-. 5 < OZ < -. 45. Thus, despite its satisfying (5.16) for C = 2, the MAE objective function is not truly

monotonic for the arbitrary combination of feature vector and hypothesis class.

5.4 Training Example Types

There is a taxonomy of training examples that follows naturally from the preceding illustrative example and

the more general differential learning scenario. Figure 5.12 illustrates three categories of training examples:

un-learned, learned, and transition examples (see definitions D. I - D.3). Each type is characterized by the

value of its associated discriminant differential7 6. Un-learned training examples are misclassified; as a

result, they exhibit negative discriminant differentials. Learned examples are ones that generate the maximum

value of CFM, so they must have positive discriminant differentials. The minimum value of 6 for which

an example is, "learned," which is given by it., in figure D.1, depends on the value of the confidence

parameter ?P. As V', -+ 0+ and the synthetic CFM sigmoid grows steep, this minimum value of 6 decreases

to zero. Transition examples exhibit discriminant differentials that correspond to the transition region of the

synthetic CFM sigmoid (i.e., x,.. < 6 < it,,, where x,,. and li.p are shown in figure D. I). Simply put,

un-learned examples exhibit negative discriminant differentials, learned examples exhibit relatively large

positive discriminant differentials, and transition examples exhibit small (positive or negative) discriminant

differentials. By definitions D. I - D.3, some un-learned examples are also transition examples.

The confidence parameter: Recall that P)v 1(W3. I X) denotes the largest a posteriori class probability

for X, W. denotes the Bayes-optimal (i.e., most likely) class, and 6.(X 10') denotes the associated

discriminant differential g.(X 10") - maxk#. g.(X I ). The notation 0e indicates that the classifier's

parameterization is the one generated by maximizing CFM. Throughout the present discussion, we assume

that the discriminator possesses sufficient functional complexity to learn the Bayes-optimal classifier of X.

As a result, we assume that 6.(X I 9) is positive, as long as V' is sufficiently small.

The relationship between small values of PwI1 0(W. I X) and/or 6.(X 1 19) and small values of tp, codi-

fied by (2.102) and(2.104), accounts for our use of the term "confidence parameter"for t?. If PwI1t(W. I X)

and/or 6. (X 10') are smallfora given X E X. VI must be small - we should literally have low confidence

that the classifier will learn W., the Bayes-optimal class label of X. Our necessary lack of confidence reflects

the small a posteriori probability of class W. and/or the functional limitations of the hypothesis class at X.

This notion of confidence is related to the difference between learning easy examples and learning hard

7 Again. absent a subscript, the notation 6 implies the discrininant differential 6, of (2.22) and (5.14).
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Learned

Transition

Un-learned
1.0

..-.... ... . . .- . . . .

...... ........... .. .... .. ....... ..

0.0 • •- .....

0 -1.0 0.0 1.0

6
Figure 5.12: Three types of training examples: un-learned examples exhibit negative discriminant differentials;
transition examples exhibit discriminant differentials that correspond to the transition region of the synthetic
CFM sigmoid (therefore, some un-learned examples are also transition examples); learned examples have
positive differentials that correspond to the maximum CFM value of unity.

examples.

Definition 5,19 The easy training example: Probabilistically, the easy example Xi of class W i = Wi

is found far from the Bayes-optimal class boundaries on X, near a mode of its class-conditional pdf (ie.,

P.lw(XI Uji) s max p11w(X IW,)). Assuming nominally equal prior probabilities for all classes, theg

easy example's a posteriori class probability PýVl 3(W. IXj) and the associated discriminant differential

6.(Xi I G') are therefore large (i.e., 0 [11), allowing learning to be accomplished with high confidence (i.e.,

1[, • I ) by (2.102) and (2.104).

Example S.19 All examples of x = I and x = -I -where x is described by (5.76) -- (5.78) -

are easy. Note in figure 5.9 that these examples have a posteriori class probabilities of one, and Q(x 1 9),

described in (5.80), generates relatively large positive discriminant differentials for them when CFM is

maximized for 4' = i:

6 ,(x -- I 1; = -. 0125) = .975
6 2(X = 110 = -. 0125) = 1.025

Recall that the magenta discriminant functions of figure 5.9 are those that maximize CFM for I, - I.

Definition 5.20 The hard training example: Probabilistically, the hard example X' of class

Wi = Wi is found in the vicinity of the class boundaries on X, in a "tail" of its class-conditional pdf (i.e.,
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p.11)(X1IWi) < max p,1 1V(XIW0i)). In these tails, Pwlx(). IXj) and/or 6.(Xj10') are relativelyx

small (i.e., < I ). so the hard example must. by (2.102) and (2.104), be learned with low confidence (i.e.,

ý, -. 0+ ) if it can be learned at all.I

Example 5.20 All examples of x = -. 9 - where x is described by (5.76) - (5.78) - are hard. Note

in figure 5.9 that these examples have a large a posteriori class probability of Pwj1 (02 I X = -. 9) = 1,

but their class-conditional pdf is small (P,,1 v (X = -. 91 W2) = .1 << Px1w (X = 1IW 2 ) = .9).

The discriminator Q(x 0"), described in (5.80), at best generates relatively small positive discriminant

differentials (i.e., < .05 ) for these examples, and does so only when CFM is maximized for p _< .05 (recall

(5.84) and note that the blue discriminant functions of figure 5.9 are those that maximize CFM for V' = .05).

5.5 The Convergence Properties of Differential Learning via CFM

Differential learning via synthetic CFM, by design, ignores learned examples: these examples have no

effect on learning because the synthetic CFM objective function is maximum and all its derivatives are

zero for learned examples.' Only unlearned and transition examples generate non-zero first and higher

order derivatives of the synthetic objective function (see (D.7) - (D.9) in section D. I). From the preceding

section and chapter 2, we know that CFM must approach a modified Heaviside step function (i.e., ?p

must approach a value of zero) if hard examples are to be learned. Intuitively, then, this limiting form of

CFM simply counts correct classifications. Since the Heaviside step is non-differentiable, there is no way

to use it with differentiable supervised classifiers. instead, we employ CFM, which remains differentiable

and approximates the non-differentiable counting objective function with high precision as its confidence

parameter V, goes to zero.

The functional properties of CFM raise the issue of the learning rate - that is, the rate at which

the search for the classifier's CFM-maximizing parameterization takes place. Givcn our definition of the

differentiable supervised classifier and the means by which it learns, learning speed depends on the first order

(and possibly higher order - depending on the specific search algorithm employed) derivative of the CFM

objective function.

Formally, we are searching for a parameterization 0* by which CFM is maximized, given the training

sample 8":

CFM($S 10*) = max CFM (8" 10) (5.86)
0

pFor stochastic feature vectors with overlapping class-conditional pdfs. the Bayes error rate is non-zero: some examnple/class label
pairs are inevitably un-leamable.

9This characteristic results in a substantial computational savings when differential learning is actually implemented on the computer
(see section 7.5).
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Knowing the value of CFM, given the parameterization 0[k] (where k is simply an iteration index), allows

us to approximate its value for the parameterization O[k + I] via the Taylor series

cFM (s I& [k + lf) =

CFM (s"1o[k]) + (o[k + II - 0[k])T Vo (CFM (S I [kJ)) (5.87)

+2½ (elk + I]- I [kl) T He (cFM (SnI9[kl)) (o[k + 1 - 0[kl)

where zT denotes the transpose of vector z, V6 (CFM (S," I [kj)) denotes the gradient of CFM with

respect to the parameter vector 0, evaluated at 0[k], and H6 (CFM (S5 1j0[k])) denotes the hessian of

CFM with respect to the parameter vector 6, evaluated at 0[k].

As a first step towards iteratively finding the parameterization 06 that maximizes CFM, we take the

derivative of (5.87), set it equal to zero, and solve for O[k + 1].

V9 (CFM (SRI1[k + Il)) =

V6 (CFM (SnI6[kJ)) + (O[k + I1 - o[kJ) T He (CFM(S5IO[kJ))

+ higher-order terms

- 0

Dropping the higher order terms and rearranging the low-order terms yields the familiar quadratic approxi-

mation upon which all first and second order iterative search (i.e., optimization) algorithms are based (see,

for example, [ 106, ch. 10]):

0[k + 11 - 8[k] + V@ (CFM (ST oI Olk])) [-H 6 (CFM (SR I6ek]))] (5.89)

Second-order search algorithms compute (or approximate) the inverse hessian; first-order algorithms assume

that the hessian is diagonal

[-He (cFM(S Is kD]' = . 1, (5.90)

such that (5.88) reduces to t°

8[k + II - 06[kJ + EV6 (CFM(S-1[ki)) (5.91)

A 6[k]

'()We use a modified form of the backpropagation algorithm to implement differential leaming via synthetic CFM. Please see
section D.5 for important additional details regarding the implementation.

I
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The step size scaling factor E has a positive sign, since CFM is being maximized.I

The parameterization 9' is taken to be 0[k] after k iterations, where k is large. We are concerned

with the learning rate: how large does k have to be to ensure that 9[k] is a good approximation to 0,

assuming that CFM (S" I@) is a unimodal function on e. Given (5.89) and (5.91), the answer to this

question depends on the search step size AO[k], which in turn depends on the gradient - and in the case of

(5.89), the hessian - of CFM (S"n 1 [k]) . The gradient and hessian, in turn, depend on the training sample

S". the functional properties of the discriminator Q(X j 0[k]) = {g, (XI O[k]), .. : gc(X IO[k])}, and the

functional properties of the CFM objective function itself. Dropping the iteration index k for notational

simplicity, we recall from (2.8 1) that the sample CFM is

jfl

CFM(S"10) = 1 Yjii (U[b,(xjIo),V•'] : Wi = w,) (5.92)
j=l

Thus, the ith element of V9 (CFM (S 19)) is given by

-CFM (S"18) = I ýL ( [67(Xi 0),V' : =Wi ) (5.93)

Likewise, the i,Ith element of He (CFM (S" 10)) is given by

oa, ioCF (S"I1) =2 o[6,(Xj : = Wj (5.94)
j=I

The gradient Ve (CFM (n 19)) and hessian HI (CFM (S" I19)) ultimately depend on the partial

derivatives -- a [,.(XJ 10), V•] and a o, r ['5.(XJ p), t"], which are given by

0 .0 0 0
or-• [6,(Xi 0), ?P] = 7[6,(Xi 1).q~ V• - L .x• (5.95)

and

0 2 -2 a [6.9 ((' 1 V'U[6T(X'I9),l ',] •- , )a(XJle) •)
880. , 02,aO

+-or [6?,(XJI1). 01 oe2 6,(XI 10) (5.96)

"When the objective function is an error measure to be minimized, L has a negative sign, and (5.90) is a familiar part of the gradient
descent equation used in the backpropaption algorithm 1119. 1201 (see section D.5).
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Figure 5.13: The synthetic CFM objective function, given a confidence parameter of •/' = .05.

Clearly, then, the step size AO[k] in (5.89) and (5.91) is proportional to the first derivative of the CFM

objective function

nAO[k] xc a! [ ~o 6,(xiI&),tp : =w (5.97)

Consequently, the learning rate is proportional to the first derivative of the CFM objective function.

5.5.1 Differential Learning via the Synthetic Form of CFM is Reasonably Fast

As we mentioned earlier, all derivatives of the synthetic CFM objective function are zero for learned examples

(see (D.7) - (D.9) in section D. 1). Thus, learning focuses on the un-learned and transition examples. Since

hard examples require learning with low confidence, we are especially concerned with the rate at which

these hard examples are learned, versus the rate at which transition examples are learned. Figure 5.13

illustrates the synthetic CFM objective function, given the confidence parameter V/) = .05 (recall that this

is the level of confidence required to learn the hard examples of the two-class random feature described

in section 5.3.6). Clearly, the first derivative of this function is quite large in the transition region (i.e.,

% " [6 P 0+,?!/ = .05] L- 61 ). However, it is considerably smaller for un-learned examples (i.e.,

7 [6 < 0,1/' = .05] -• .02). As a result, transition examples dominate the learning process when V,

is small, so un-learned examples are learned slowly.

This phenomenon is a natural and unavoidable consequence of the necessary functionhl properties of the

CFM objective function. Thus, we are motivated to maximize the learning rate for un-learned examples as

V' becomes small, subject to the condition that CFM must simultaneously converge to a modified Heaviside
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step function of 6. Section D.3 discusses this objective at length, rigorously defining reasonably fast 9

and unreasonably slow learning in the process. Therein we denote the ratio of , 0 /'] for transition

examples to A" [6, , for unlearned examples by ,( /'). If 0( ") increases exponentially with decreasing

V/), learning becomes dominated by the transition examples for small Vi': the classifier's parameters are

updated to transform the transition examples into learned examples, while the un-learned examples are

ignored (because the derivatives they elicit are so small in comparison to those of the transition examples).

Under these circumstances, it takes an unreasonably long time (e.g., [58, pp. 155-158]) to learn the yet

un-learned training examples, and we characterize the (differential) learning strategy as unreasonably slow.

If, on the other hand, 6(0b,) increases polynomially with decreasing lt,, the learning strategy is reasonably

fast.

Section D.3.2 proves that differential learning vi, the synthetic CFM objective function described in

section D. I is reasonably fast: 0(#') is 0 [ ,- 2 ]. This characteristic allows hard examples to be learned in

reasonable time - an assertion that is implicitly illustrated throughout the experiments of part II. Synthetic

CFM has the additional property of being synthesized from three linear functions of 6 connected by two

circular arcs (see section D. 1). Consequently, all derivatives of order > 2 are zero for most values 12 of 6.
As VY becomes small, the synthetic function becomes approximately piece-wise linear in 6 (see figure 5.13, •

for example). Thus, if 6,(X 10) is linear in e - as it is, given a linear hypothesis class - learning is

very fast, even for hard examples. This is because (5.91) is a good approximation to the ideal equation for

0[k + I] implied by (5.87). Specifically, let the matrix A satisfy

[V 0 (CPM(S"9[kJ))]T A = !, (5.98)

where I denotes the identity vector. Owing to the approximately piece-wise linear nature of o" [ < 1 , i]

and the choice of a linear hypothesis class (such that 6,(X I0) is linear in 0 ), (5.87) reduces to

CFM(S"9[k + 11) 5 CFM(SM 10[k]) + [V 9 (CFM(S"I9[k]))] T (9[k + 11 - 0[k]) (5.99)

Thus,

'2That is. all higher-order derivatives are zero for values of 6 corresponding to the linear segments of the synthetic function;

higher-order derivatives corresponding to the arc segments of the synthetic function are non-zero. As ý' becomes small, the arc
segments of the synthetic function also become small; synthetic CFM becomes approximately piece-wise linear, and all its higher-order
derivatives are zero.
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A [CFM(SIe0[k + I1) - CFM(S"Ie[k])] 5 A [V0 (CFM (S I e0kl))I (8[k + I) - 0[k])

s.1. o[k + I] a5 01k] + A [cFm(s I9[k + 11) - cFM(S"T I0[kJ)]

(5.100)

Under these conditions, for which both synthetic CFM and the discriminator are linear functions of 0,

differentially generated linear classifiers exhibit very fast learning. Sections 7.7 and 8.4.2 illustrate this

phenomenon.

5.5.2 Differential Learning via the Original Forms of CFM is Unreasonably Slow

and/or Inefficient

We were motivated to develop the synthetic form of CFM because the original functional forms described in

155] induce either unreasonably slow or inefficient learning. Figure 5.14 illustrates these functional forms.

The original functional form of CFM was the logistic sigmoidal form on the left, given by

01[6] = a[I +exp(-13 .
6 +)]-, (5.101)

where a is a superfluous linear scaling factor, < is a parameter that shifts the sigmoid along the 6 axis, and

is roughly equivalent to the synthetic form's confidence parameter t/'. Section D.3. I proves that 0(13),

the ratio of the function's derivative for transition examples to its derivative for un-learned examples, is,

=,(13) = 0 [exp(161 0)]. f> 1, 6 < 0 (5.102)

Thus, 0(13) increases exponentially as /3 is increased (i.e., as the function's equivalent of the confidence

parameter goes to zero). Under these circumstances, transition examples dominate the learning process, and

un-learned examples are effectively ignored. The irony here is that /3 must be increased in order for the hard

examples to be learned, but increasing 13 also ensures that it will take an unreasonably long time to learn the

hard examples. In short, differential learning via the original logistic sigmoidal form of CFM is unreasonably

slow, failing to learn hard examples in reasonable time (e.g., [58, pp. 155-158]).

The "maximally flat" form on the right of figure 5.14 is given by

or [6] = -a log [I + (( - 6)28] (5.103)

where a, (, and 13 have the same interpretations as they do for the logistic sigmoidal form. It was

developed in order to improve the learning rate for hard examples. Unfortunately, this form of CFM does

not converge to a modified Heaviside step function as f1 -4 'o (i.e., as its equivalent of the confidence
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Figure 5.14: Old forms of the CFM objective function, described in [55). Left: The logistic sigmoidal form
satisfies the conditions for monotonicity, but leads to unreasonably slow learning. Right: The "maximally
fliat" form induces reasonably fast learning, but fails to satisfy the conditions for monotonicity.

parameter goes to zero) - a necessary characteristic if the objective function is to be monotonic and if it is

to induce asymptotically efficient learning. Thus, differential learning via the maximally flat form of CFM is

reasonably fast, but provably inefficient.

5.6 Summary

The link between an objective function's monotonicity and the efficiency of the learning strategy it implements

is intuitively appealing. The CFM objective function induces asymptotically efficient learning - regardless

of the choice of hypothesis class - precisely because it is monotonic. Error measure objective functions

induce inefficient learning' 3 because they are non-monotonic. In fact, the monotonic fraction of discriminator

output space is a good indicator of how efficient the resulting learning strategy will be, given a particular

objective function, the number of classes C, and a hypothesis class that is assumed to be an improper

parametric model of the feature vector. The experiments of part II bear this out. Although we do not quote the

monotonic fractions explicitly, it is straightforward to show that the less monotonic objective functions induce

less efficient learning when the hypothesis class is improper. When the hypothesis class is a proper parametric

model of the feature vector, the non-monotonic nature of some error measures (i.e., those associated with

maximum-likelihood learning) is offset by the parametric model's functional properties. These properties

13... except, of course. for the case in which the hypothesis class is the proper parametric model of the feature vector and the error
measure is associated with maximum-likelihood learning.



5.6 Summarv 157

constrain the discriminator's correct output states to lie in the monotonic region of "correct space".

In order to be truly monotonic, the objective function must under all circumstance be a strictly increasing

or strictly decreasing function of the classifier's empirical training sample error rate. When the learning task

includes hard examples, the CFM objective function must approach a limiting step functional form in order

to be monotonic (and induce efficient learning). I .iis requirement, in turn, raises the issue of the learning

rate. The synthetic form of CFM detailed in appendix D allows hard examples to be learned in reasonable

time. Consequently, the synthetic form is superior to the original functional forms described in [55], which

induce unreasonably slow and/or inefficient learning. The difference between reasonably fast learning and

unreasonably slow learning is not to be underestimated in the case of hard examples. Many of the results in

part II would be worse by a statistically significant margin if hard examples were not learnable in reasonable

time via synthetic CFM.
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Chapter 6

An Information-Theoretic View of
Stochastic Concept Learning'

0
Oli dine

We make a distinction between the probabilistic information content and the discriminant information content

of a randomly-drawn training sample, the former being associated with probabilistic learning, and the latter

0 being associated with differential learning. We show that a simple unfair (or "rigged") game of dice forms

the basis of all learning/statistical pattern recognition tasks. We analyze this game in order to prove that

the discriminant information contained in a training sample is always at least as great as the probabilistic

information contained therein. The information -theoretic argument relies on Rissanen's notion of stochastic

* complexity (e.g., [ 1151) and can be viewed as an extension of the chapter 3 proofs that differential learning

is 1) asymptotically efficient, and 2) requires the least functional complexity necessary to generate a Bayes-

optimal classifier. We derive tight, distribution-dependent lower bounds on the functional complexity and

training sample size necessary for "winning" the dice game via the differential and probabilistic learning

0 strategies. 'The differential learning strategy's functional complexity and sample size requirements are usually

less (and never more) than the probabilistic learning strategy's. We show how simple extensions of the single

dit. paradigm can lead to analogous lower bounds on the hypothesis class's functional complexity and the

training sample size necessary for good generalization in learning/pattern recognition tasks. We conclude by

0 ~discussing the limitations of this generalization to the uncountabje fe-iture vector space.

6.1 Introduction

The essence of this chapter lies in the analysts of a rigged (or unfair) game of dice that, in turn, lies at the

* heart of all stochastic concept learning/statistical pattern recognition tasks. Specifically, we have a C sided

1This chaper is a revised version of work first published in 1511
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die. Each face of the die has some probability of turning up when the die is cast (i.e., tossed). One face is

always more likely to turn up than any of the others; thus, all the face probabilities may be different, but at

most C - I of them - the lesser probabilities - can be identical. The objective of the game is to identify

the most likely face with specified high confidence by observing a sequence of independent casts of the die.

The relationship between this rigged die paradigm and learning stochastic concepts for statistical pattern

recognition becomes clear if one realizes that a single unfair die is analogous to a specific point on the

domain of the random feature vector being classified. Just as there are specific a posteriori class probabilities

associated with a point in feature vector space, a die has specific probabilities associated with each of its

faces. The number of faces on the die (C ) equals the number of classes associated with the analogous

point in feature vector space. Identifying the most likely die face is equivalent to idL Fying the largest a

posteriori class probability for the analogous point in feature vector space - the requirement for Bayesian

discrimination, as described in chapter 2.

We begin by defining two measures of functional complexity, based on Rissanen's definitions of stochastic

complexity and minimum description length [112, 113, 114, 1151. Probabilistic complexiti, (definition 6. 1)

is the stochastic complexity measure associated with probabilistic learning, whereas differential complexit'

(definition 6.2) is the stochastic complexity measure associated with differential learning. The relationship

between probabilistic and differential complexity parallels the relationship between the strictly probabilistic

and differential forms of the Bayesian discriminant function described in section 2.2. 1.

We analyze the rigged game of dice, proving that it requires only one bit of differential complexity to

learn the identity of the most likely die face differentially from a sequence of independent die casts; in

contrast, it typically requires more (and never requires less) differential complexity to learn the identity of the

most likely die face probabilistically via the same sequence of independent die casts. Moreover, the identity

of the most likely die face becomes empirically evident with far fewer casts of the die than are required to

estimate the die's face probabilities with specified precision. In more formal terms associated with learning

for statistical pattern recognition, the discriminant information content of a sequence of independent die casts

is usually higher (and never less) than its probabilistic information content. These information-theoretic

proofs are analogous to the estimation-theoretic proofs of chapter 3 that differential learning is asymptotically

efficient (Theorem 3.1), requiring the hypothesis class with the least functional complexity necessary for

Bayesian discrimination (Corollary 3. 1).

Following these arguments, we formulate tight, distributin-i-dependent lower bounds on the functional

complexity and the number of casts necessary to identify ..e most likely die face empirically with high

confidence. We show how simple extensions of the single die paradigm can lead to analogous lower bounds on

the hypothesis class's functional complexity and the training sample size requirements for good generalization

in learning/pattern recognition tasks. We conclude by describing the limitations of the generalization to the

uncountable feature vector space: since the rigged die paradigm is fundamentally discrete, it over-estimates
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- perhaps by orders of magnitude - the training sample size requirements it predicts are necessary for

generalizing well with uncountable feature vectors.

6.2 Probabilistic versus Differential Complexity

Axiom 6.1 We view the number of bits M. in the finite-precision approximation qM[x] to the real number

x E (- 1, 1] as a measure of the approximation 'sfimctional complexity. That is, the functional complexity of

46 the approximation is the number of bits with which it represents the real number.

We compute the Mq-bit approximation qM[z] to the real number z E (- 1, 1 ] using the following fixed-point

representation:

* MSB (most significant bit) = sign[zJ

MSB- I = 2-1
(6.1)

* LSB (least significant bit) = 2-(M,-I)

The specific value of qM[z] is the mid-point of the 2 -(MU--" -wide half-open interval on which z is located: 2

r sign[z]. (L IzI. 2(AM-') j• 2 -(M-) + 2 -Uf) IzI < I
*qM[Zj= -(6.2)I sign[z]. (I - 2-",), IzI > I

The lower and upper bounds on the quantization interval are LMu[z] and UMu[z], such that

0 LM,[Z] < Z < UM,[zI (6.3)

LM,[z] = qM[z] - 2-", (6.4)

UM[ZJ] = qm[z] + 2 -M5  (6.5)

The fixed-point representation described by (6.1) - (6.5) differs from standard fixed-point representations

in its choice of quantization interval. The choice of (6.2) - (6.5) represents zero as a non-positive, finite

precision number (i.e., by (6.2), qm[O = -2-M,.

Note that if
0 2The notation [7J denotes the largest decimal integer not greater than z. and the notation [zI denotes the smallest decimal integer

not less than z (e.g.. [75. pg. 371).

0
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zi = zo + 2 -(Mq-I1 (6.6)

(i.e., if zo and zi are in adjacent quantization intervals for Mq-bit quantization) then

LM,[ZII = UM,[ZO] (6.7)

Given this information-theoretic measure of functional complexity, we define two functional com-

plexity measures: one is for the a posteriori class probabilities {Pwlx(WI I X) .. PwIx(Wc I X) }

of the C-class random feature vector X; the other is for the a posteriori class differentials

{AwIx(W0a IX), ... , AwIx(OcI X)} of X. Both definitions are based on Rissanen's notion of

stochastic complexity and minimum description length [112, 113, 114, 1151

Definition 6.1 Probabilistic Complexity Mqp: The probabilistic complexity of an approximation to the

a posteriori class probability Pwl,(oi IX), lying on the half-open interval (l,u), is the minimum numberof

bits Mqp necessary to ensure that qu,,[Pwl,(Wi I X)J lies between the lower and upper bounds I and u:

I < Lmqp[Pwz(WiIX)J < Pwlj(WLiX) < UM. [PwI3(WdiIX)J _< u
(6.8)

I < u, 0 < I < 1, 0 < u <

Remark: Thus, our definition of probabilistic complexity is identical to Rissanen's definition of stochastic

complexity, applied to approximating the feature vector's a posteriori class probabilities.

Definition 6.2 Differential Complexity MqA : The differential complexity of an approximation to the a

posteriori class differential A wl.(W.tI X), lying on the half-open interval (rlu']. is the minimum number of

bits MqA necessary to ensure that qmA [Awl,, x(WI X)] lies between the lower and upper bounds r' and

u':

r LM.Awl(WiIX)J < Awt.P(WiMx) < UMM,.AAwI.(WiIX)J _< U'
(6.9)

/'< •/ I< F < ,-i< u' < i

Remark: Our definition of differential complexity is consistent with Rissanen's definition of stochastic

complexity, but it focuses on approximating the feature vector's a posteriori class differentials rather than its

a posteriori class probabilities.

The relationship between probabilistic and differential complexity is formalized in section 6.3.3.
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6.3 Exploring the Curious Relationship Between Winning a Rigged

Game of Dice and Building an Efficient Classifier

Consider the C-sided die X with face probabilities {P$V1x((W1 I X), ... , Pwlx(W)c I X)}, which sum to

0 one: Pjvjx(WJ I X) is the probability that the ith face Wi will turn up on any given cast of the die. We

assume that one die face is more likely than all the others. Using the notational conventions of section 2.4,

we denote the probability of this most likely face by

= P.VIX( 1 ) IX) _ max P)Vlx(wk IX), (6.10)k

More generally, Pvlx( W~j) IX) denotes the probability of the jth most likely face WO(j), whereas

Pwlx(WJj I X) merely denotes the probability of the face with the randomly-assigned identifying index j

(i.e., Wj ).

Notational Conventions for Empirical Estimates of Probabilities: Given n casts of the die in which the

ith face turns up ki times, we employ the following notational conventions:

The integer ki denotes the number of occurrences offace Wi, such that

PwV'(W• IX) = -
n

denotes the empirical estimate of Pwl1 (WU)i I X). The integer k(i) denotes the number of occurrences of the

ith most likely face W(,), such that

Pw 1(V.P ) IX) = k,

denotes the empirical estimate of Pwjz (W(jt) IX). The integer k~(j) denotes the number of occurrences of

the ith empirically most likely face W. (j), such that

PWw3 (W)... jx) = -
n

denotes the jth empiricaUily.rankedface probability estimate. Note that the jth empirically most likely die

face W..,(,) Is not necessarily the same face as the true jth most likely die face (A)(,, for a finite number

of die casts n.

The empirical estimates of the face probabilities are multinomially distributed [33], such that for n casts of

the die, the probability that there will be exactly ki occurrences of the ith face is
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P.(n • P,,Ix(WI IX) k=,n . PwIx(W2IX) = k2 , - l P~lx(Wc IX) =k,) (=)

n H 1c P, W j I6. 
)I"

where

Z ki = n (6.12)

The question we would like to answer is, "How many casts of the die must occur before the most likely die

face W( ) becomes empirically evident with probability c ." Given n tosses, we can identify the most likely

die face by first estimating the probability of each face

k-
PWiX(Wi IX) - (6.13)

we then rank these estimates and choose the empirically most likely face W..(I) (i.e., the one with the

largest estimated probability PwIx( W.(j) IX)) as our estimate for W(1). We refer to this strategy as the

probabilistic strategy for learning the most likely die face through empirical observation, Another way to

identify the most likely die face is to estimate the discriminant differential

6,(X) = PwIx(W~iIX) - max Pwjx(Lj IX) = ki - maxj#, kj (6.14)'I •

for each of the C die faces. Only one of these (i.e., 6_,,(j)(X)) will be positive, and it will be associated

with the empirically most likely die face W..(j) - our estimate for W(,j1 . We refer to this strategy as the

differential strategy for learning the most likely die face through empirical observation. We analyze the

differential strategy first and follow with an analysis and comparison of the probabilistic strategy. 0

6.3.1 The Differential Mechanism by which the Most Likely Die Face Becomes

Empirically Evident

Consider the C a posteriori class differentials, originally defined in (2.13):

AwIx(WiIX) PwIx(UWi IX)- maxPwIx(WuIX) i= I ,... C (6.15)

Note that when i = (I) 5

A )Vlx((1h() IX) = PWlx P( 11 IX) - PwIx( .((2) IX), (6.16)

,I III IllI Il Inl l lll I 0



6.3 Exploring the Rigged Game of Dice 165

and when i i (1)

A.wix(W(,) IX) = PwIX(WIi) IX) - PWIX(I J )iX) Vi > 2 (6.17)

Note also, by (6.15),

Awlx(WU2) IX) = -A)lX(W(, 1 IX) (6.18)

Thus,

* C 1C)

SAwix(W, IX) = P• v P x(Wj, IX) - (C- 2). PrVwX(WO•, IX), (6.19)

and we can use the relationship )= PiVlx(Wi IX) = I to show that the C aposteriori class differentials

of (6.15) yield the C die face probabilities as follows:

Pwlx(Woi) iX) = ; [ - C wlx( (6lX)
i=(2) (6.20)

Pwlx(Low IX) = Aw x(Wj I•X) + PwIx(W(I) IX) Vj t> 2

From this perspective, estimating the C a posteriori class differentials with high precision is equivalent

to estimating the C die face probabilities with high precision, and vice-versa. However, since we need only

know the signs of the a posteriori class differentials to identify the most likely die face

AWlX(wo)iX) > 0 (6.21)

AWlx(Wuj ]X) < 0 Vj _ 2,

we need only estimate each a posteriori class differential to one (sign) bit precision in order to identify

the most likely die face. Specifically, in order to correctly identify the most likely die face W(i) with

probability at least a, using the discriminant differentials {(~(1, (X), ... , t(.( (X) }, we need only ensure

that the die is cast enough times so that the identity of the empirically most likely die face is that of the true

most likely die face (i.e.. W -(I) -4 WO()) with probability at least a. If this is the case, 3 the signs of

the discriminant differentials {6(i)(X), ..... 6(c) (X)} match the signs of their corresponding a posteriori

class differentials (AWlx(W(0) IX), ... Awlx(W(co) I X)} - recall that this is the condition of (2.17)

necessary for Bayesian discrimination:

3The notational conventions for the discriminani differentials follow those for the face probabilities described in the note on page 163.
"Thus, 6 , (X) is associated with W,. (,,1 (X) is associated with W(.) , and 6_(j) (X) is associated with WU _)"
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P (sign[b(,) (X)] = sign[A%.Ix(W(j) I X)] Vi) =

( x)= 6(•),(X) > 0 (6.22)

6(j)5(X) < 0 Vj > 2 ) •

When (6.22) holds, the largest empirical face probability reflects the identity of the true most likely die face:

P (Pwtx(Wt(,) IX) = PwIx(L(,) IX) > PWlX(WO() IX) Vj > 2) > a (6.23)

The computation to determine the smallest number of die casts n for which (6.22) and (6.23) are satisfied is

intractable for all but small values of C and n. For this reason, we make the following assumption.

Assumption 6.1 We assume that the empirical estimate of the most likely die face's probability is greater

than the empirical estimates of all other die face probabilities if it is greater than the empirical estimate of

the second most likely die face's probability. Mathematically,

We assume that if PWI(W(j) I X) > PWI(W)(2) I X)
(6.24)

then PwIx(Wo IX) > PWI,.(W() IX) Vj> 2

Under this assumption, the multinomial expansion implied by (6.22) and (6.23) can be simplified as

follows. Note: we use the short-hand notation P(Wj) to denote P)vIx(W.j I X) and P(Wj) to denote

Pwjx(Wj I X); this makes the following formula more readable.

P ( O((,,) > P(W•'o) Vj Ž 2) =

P(6(1)(X) > 0, 6(j)(X) < 0 Vj >_ 2) (6.25)

-b• P (P(PO)) > P(W(2))) (6.26)

P (n- P(.(1)) k(I),n . P(W( 2 )k < ) ,,,0

SP(L&.(1) )k~II - P(La.3 2) )k(,) 0-P(W(1),*,- P~(W( N-k(1 ,-k( 12 )1

- n!, kI, k(2,! (n - k 1) - k(2)- P (6.27)

>0
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where
4

A = mC (6.28)
A, max 1, t!L + I , C > 2 (.8

St'l = n (6.29)

A2 = 0 (6.30)

tV2 = min (k(,)- l,n-k(,)) (6.31)

The sufficiency of (6.25) - (6.27) as an indicator that we have correctly identified the most likely die

face rests on the validity of assumption 6.1, which allows the reduction of (6.25) to (6.26). The upper

bound on k(2) in (6.27), given by t' 2 in (6.31), simply enforces the constraint of (6.12) - namely,

that all the ks sum to it. The lower bound on k(11 in (6.27), given by A, in (6.28), is related to the

reduction of (6.25) to (6.27). If A1 were 1, then (6.27) would be an exact expression of (6.26). However,

we really want (6.27) to be a good approximation to (6.25). A necessary and sufficient condition for

PWIX(W(h• IX) > PwVx(Wutj IX) Vj _> 2 is that the most likely die face occur more frequently than any

other. Thus, a necessary (albeit insufficient) condition for Pwix(WO() IX) > Pwlx(W(i) IX) Vj _> 2 is

c

Zku) = n- k(I) - k(2) < (C- 2)k(1 1  VC > 2 (6.32)
j= 3

such that

k(1 ) > n-k(2 ) VC > 2 (6.33)

-the constraint enforced by (6.28). Clearly there will be cases for which (6.33) holds, but our assumption

that PwIx(W(I) IX) > Pwlx(Wu1 IX) .. , > 2 does not (i.e., (6.31) is a necessary but insufficient

condition for assumption 6.1 to hold in all cases). Thus it is important to qualify assumption 6.1 with

the scenarios under which it might fail, yielding a higher-than-warranted estimate of the probability in

(6.25). We envisage two such scenarios: 1) the scenario in which n is small, and 2) the scenario in which

PWlX(W(2) I X) -. PwIX(W~c) I X) are nominally equal. Both scenarios can give rise to cases in which

the empirical estimates of {PwIx(W( 2) I X), .... PWlX(W(¢) I X)} do not reflect the rankings of the true

probabilities {Pwgx(W( 2) IX), ... ,PwIx(W(c) I X)}.

The significance of the first scenario is diminished by the requirement that Pwlx(W(I) IX) be consid-

erably greater than PwIx(WO 21 I X) in order for their corresponding estimates to be ranked appropriately

4 The operalor max (a. b) returns the greater of a and b. Likewise. the operator rmin (a. b) returnsthe lesser of o and b.
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with high probability for small n. This would suggest that our estimate of the probability in (6.25) is not

significantly affected by assumption 6. 1.

In the second scenario, if Pwix(w(o) IX) is only marginally larger than P)VIx(W)(2) IX), then n will

have to be so large to assure with high confidence that the rankings of P1%:x(WO(J IX) and Pwjx (U)(2 ) I X)

are valid, the effect of the lesser-ranked probabilities on the approximation of (6.27) will be minimal. If on

the other hand PvvIx(W)(1) I X) is significantly larger than PlV.IX(W4 2) I X), then this scenario becomes a

special case of the first scenario, and again we are reasonably safe in our assumption.

These mitigating factors notwithstanding, there are surely cases in which assumption 6.1 does not hold.

In these cases, (6.27) over-estimates the probability that the most likely die face has become empirically

evident after n casts of the die.
It is enlightening to recognize that the necessary condition for a reliable I-bit approximation of

Awlx(Ww(t) I X) given in (6.25) is equivalent to the condition

P (0 < 6i) (X)<l > 1) (6.34)

This condition is, in turn, a specific example of the more general necessary condition for a reliable Mq-bit

approximation 6(1)(X) of AwIx(,I 1) 1 X):

P (LU'. [A wIx ( , I X)] < b() 5Um"'.[A wIx(u)(1 I X)l)>_ (6.35)

where Lm,,A and UM,,A are the lower and upper bounds on the Mq -bit quantization interval for

qm,,, [Awlx(W(I) IX)] (recall definition 6.2). Given a positive integer n and a real number z e (-I, i],

let k�,. [z] be the smallest value of k for which A > Lm,, [z], where LM,,A [z] is given by (6.5); likewise, let •

kuo, [z] be the largest value of k for which • < Um,, [z], where UMA [z) is given by (6.5). More formally,

k.,,,A [z] .n . LM, .[z]J + i
(6.36)•

ku,,,M [z] Ln. Um..zNJ

Then if zo and z, are in adjacent MqA-bit quantization intervals, with z, in the "upper" interval (as

formally specified by (6.6) - (6.7)), the following relationship holds:

kt.,,,z ,J = kU, [zol + 1 (6.37)

With these relationships, (6.25)-- (6.3 1) can be generalized as follows. Note: again, we use the short-hand

notation P(Wj) to denote Pwlx(Wj I X) and P(Wj) to denote PwIx(Wdj IX). Likewise, we use A(Wj)

to denote Awlx(Wuj, IX) in the interest of notational simplicity.
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P(LmAIA(W(I)J < 6(Ij(X) < UmA[Ž1(W(w))J,6u)(X) < 0 Vj > 2) =

P (LM0 1A[(W<) < b(I() W < U [A(( ))] (6.38)

= P (O < b(I)(W)- LM".,[A(WI IA)} < UM'. [A(LO(IM)--LM,. [A(LO(O))]

- e Pi () < P(W3(,) - LMf4A[d*(W(,))I _< P(W2~z))+ UM.AIA(W(I))]- LM.A[/Ž(WJt))J)

*= P(P(W( 2)) < P(W(,))-LM,&{A(O(,))J.P(0 (2 )) >_ P(W3I,))- Uu[Ak(W(,))])

= 1  )k(II)2) [<' ())(I(

Sn!Z P(Uj(I))k, I P(W(2))k(21 (I _ P(W)(0) - P(w.d(2)))('-', 1-k')*,= k(,)! E12 ,=): k( 2)! (n - k(j) - k(2))!(6.39)

> a

where

, = [A(w[ ))]J, C = 2

max (kL,, [A(wJ(j))-],-=!E + 1) , C > 2 (6.40)

S= n (6.41)

"\2 = max (0 k(i) - ku1 ,,, [A(WJ(,))]) (6.42)

V2 = min (k(I)-kL.[jA(WL(j)j).n-k(I)) (6.43)

The limits of (6.40), (6.41), and (6.43) correspond to those in (6.28), (6.29), and (6.31); the limit of (6.42) is

an additional one imposed by our desire for an Mq > I bit approximation, which places both lower and

upper bounds on the discriminant differential approximation 61 i)(X).

Theorem 6.1 The differential learning strategy attempts to approximate the a posteriori class differentials

SA AWl.(W(I0 IX), ... , AW1 (W(c) I X)} to one (sign) bit precision. The probability that differential

• learning will achieve this goal, given a sample size n, is higher than the probability of success for any other

learning strategy by which the most likely die face W03) might be ascertained

Proof : As mentioned earlier, the necessary and sufficient condition for the most likely die face

to be empirically evident after n casts of the die is simply that the number of occurrences of the

most likely face be greater than the number of occurrences of any other face. Equival, y, the dis-

criminant differentials {6(,)(X). ... ,6 (cj(X)} must approximate the a posteriori class differentials

I
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{Awjx(W)(I) IX),... A x(W(c) IX)} to at least one (sign) bit precision. Thus, if we employ the

differential strategy of approximating w.ie a posteriori class differentials, we end up choosing the empirically

most likely face W_,.() as our estimate for the true most likely face W(,) . Our probability of success using

this strategy (i.e., successfully approximating the a posteriori class differentials to one bit precision, thereby

identifying w(,) correctly) is equal to the probability of all possible ca&. sequences of length n for which

k(t) is maximal. This, in turn, is equal to the sum of all legal expressions (that is, all expressions in which the

ks sum to n) of the multinornial probability mass function (pmf) given by (6.11) and (6.12). We re-express

the multinomial pmf here, using rank indices:

c PII(~)IX) k,,

P (k,,), ..... kAc) = n! [ - ,,, = n (6.44)i=It ki !i

Since the multinomial pmf in (6.44) is non-negative, and since the sum of all the pmf terms satisfying the

constraints

k(t) > k(j) Vj >_ 2; k(t, = n (6.45)
f= I

represents the cumulative probability of all cast sequences of length n for which WJ(1 ) is empirically

evident, the cumulative probability that differential learning will meet its goal is the largest possible for any

strategy by which the most likely die face might be ascertained. That is, the differential strategy described in

theorem 6.1 has the greatest probability of success in achieving its goal. i

Remark: Unfortunately, there is no compact way to express the cumulative multinomial probability

described in the preceding proof. The only way to compute the sum exactly is to evaluate each and

every possible combination of ks to determine if it satisfies the constraints of (6.45); if it does, then

the corresponding multinomial expression is added to the cumulative sum. As mentioned earlier, this

computation is intractable for all but very small values of C and n. We resort to the approximations of

(6.27) and (6.39) in order to estimate the probabilities of (6.25) and (6.38) via a tractable computation (see

section 6.4). It is interesting to note that the logic of the preceding proof holds for the approximations

as well. Specifically, it should be clear from a comparison of (6.27) -- (6.31) and (6.39) -- (6.43) that

the probability P (Lm,.[Z(W(I))] < 651t)(X) < UM,,[A(j(WI))J) is largest for a given sample size n

when MqA = 1 such that Luj, A[A(W(,))J = 0 and UM,.A[A(W(t))J = I (i.e., k.,A[(,(W))J = I and

ku,., [A(W(.))] = n). In simple terms, attempting to estimate A(W(,11 ) - recall that this notation is

short-hand for the top-ranked a posteriori class differential A Wi(,(tI) IX) - with more than one bit

precision constitutes a learning strategy with a lower probability of success than the differential learning
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strategy. This is because the goal of estimating the a posteriori class differentials with higher precision places

tighter constraints on the values of {k(n) ,.... k(c) } that satisfy the more rigorous learning goal. Because

there are some cast sequences of length n (hat satisfy (6.45) but do not satisfy the more stringent goal, there

will be fewer terms in the multinomial sum for the higher-precision strategy. Thus, the higher-precision

strategy will have a lower probability of success.

Corollary 6.1 The differential strategy for learning the most likely die face requires the minimum differential

complexity necessary for the task.

Proof : The discriminant differential 6(n) (X) need only approximate the a posteriori class differential

AWIx(Wt() IX) in sign in order for the most likely die face to be evident. That is. the necessary and

sufficient condition on 6(i)(X) for correctly identifying the most likely die face is

sign[6(j) (X)] = sign [A WlX (to(j I X)], (6.46)

which follows directly from the constraint k(n) > koj Vj _> 2 in (6.45). Equivalently,

qMf,,,,[6(i)(X)! = qM,4... [AWX(to(,)IX)]; Mgqimn = 1 (6.47)

I

Remark: Note that the condition of (6.46) is precisely that of (2.17).

Corollary 6.2 The differential learning goal of approximating AIl (WC1 ) I X) to at least one (sign) bit

precision with confidence not less than a requires the smallest sample size n.% of any learning strategy by

which the most likely die face U,) might be ascertained.

Proof : The proof follows immediately from the proof of theorem 6.. I1

6.3.2 The Probabilistic Mechanism by which the Most Likely Die Face Becomes

Empirically Evident

As described earlier, the probabilistic strategy for identifying the most likely die face involves estimating the

C face probabilities {Pw 1x(Wj(i) IX) ..... P)vlx(W(c) I X)). In order for us to identify the most likely

face (ci() with probability not less than o, we must distinguish Pwpx(W(n) IX) ft "n PVIx(WJ(2) IX)

with probability not less than (k. This implies that we choose a quantization level Mqp such that

P ( Lu,[PwIx(W1 i I X)] < PwIx(C)() IX) < Uu4 ,IPwIx(w'OI X)] > o (6.48)
qM[IP)WIx( ( ,LA( I IX)] > qf,,[P)vIx((U(2) I X)/
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The minimum value of Mqp that satisfies (6.48) for asymptotically large n (by making the quantized

difference qM, rPwvjx(•W(i) IX)) - qMp[PWjx(WO( 2) IX)J implied by (6.48) exceed one least significant

bit) is

I + [-log2 [wIX(WU(1IX) 1 , -I log 2 [P)VIx(wLj IX)l V Z+,

S- , j {E ,2}
sign bit magnitude bits

Mep min =

1 + r-log2 [(AWx(WI) IX)]] + I, otherwise

sign bit magnitude bits

(6.49)

Recall that Z+ represents the set of all positive integers. Note also that the conditional nature of

Mqpij in (6.49) prevents the case in which lime--o Pvlx(W(j)( IX) - F = Lu,[Pjvwx(W(j) IX)] or

PwIx(Wt(2) IX) = UMjPWx(W(2) IX)]; either case would require an infinitely large sample size before

the variance of the corresponding estimate became small enough to distinguish qM1Pwjx(L4-(I) I X) from

qM[Pwjx(W(P) I X)J. The sign bit in (6.49) is not required to estimate the probabilities in (6.48), since all

arobabilities are positive; it merely follows the conventions of section 6.2. Thus, the probabilistic complexity

of the Mqp-bit approximation is actually Mqp - I rather than Mqp.

Using Mqp = Mqpmi, from (6.49), (6.48) is given by

p ( LuqlPw~IX(Pul) IX)] < PIVix(Pw) IX) _• UM" [PWIx(Wi) I X)].

qMq,[PwVx(W(1) IX)] > qM,4 [PWlX(W(2) IX)] /

! It ...I VcI PIVlX( (i- X) ; I k(j) = n (6.50)
kill =.%(, i1 tc i= A~r i=1 ki i=1I

> ,

where

A, = k.,,,Pwjx(W(,j IX)l (6.51)

t'i = ku/. ., . [PWix (W.(j) I X)] (6.52)

Al > t, Vj < 2 (6.53)

when we require that each of the approximations of Pwlx(Wtj) IX) fall within a single quan-

tization interval with probability not less than o. This is the case if our goal is to estimate

{PwHlx(W(t) IX), ... Pwlx(W(c) IX)} with Mqp-bit precision.

4
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Of course, if our goal is merely to distinguish between the quantized approximations qM[Pw1x(j( I) I X)]

and qM[P1.x(.(W(2) IX)] - the weakest form of probabilistic learning -- we need only enforce a

lower bound on the approximation of Pwlx(W(I) IX) and an upper bound on the approximation of

PwIx(W( 2) I X) ). This leads to the following approximate formula (in short-hand notation), analogous to

those of (6.25) and (6.38):

P (qu[P(L0(,,)] > qura(LOp)l, Vj > 1)

U1 P( 0•--I))k(I 1 P((A.( 2) )k1 2 (I - P(WO--I)) -P(L4J-( 2) )Wn-k1 -k&(2))

>0

where

A1  = max(8+l -kt2) + i) VC>2 (6.55)

rl= 1 (6.56)

A2 = 0 (6.57)

V2 = min(B,n-k(•)) (6.58)

/ = jB,. = k,, .1i[P(WJ( 2))I = kL.,.[P(M j)]- 1 (6.59)

The restriction of (6.55) stems from (6.33), since this condition is necessary (although, again, insufficient) to

ensure the validity of the approximation in (6.54).

Equation (6.59) illustrates that there is one and only one boundary 5 separating our quantized estimates of

Pwlx(W(I) IX) and PwIx(W( 2) IX) for Mqpmi,n-bit quantization. If, however, we use (Mqp > Mqmim)-bit

quantization along with equations (6.55) - (6.58), there are many boundaries that can be used in (6.54), via

(6.55) and (6.58). Specifically, there is a simple recursion by which every possible boundary B for Mqp-bit

quantization leads to itself and two additional boundaries for (Mqp + I)-bit quantization:
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Mqp-bit quantization (Mqp + I)-bit quantization

B +2-M+ , 13+ 2-"qP < LMq+ I[PlVIx(W(I) IX)]
no boundary, otherwise -

(6.60)
/3 -- 13

13 _ 2-M-1 1, B-- 2-",' >_ UM,+ t[PwX(WL( 2) IX)]
no boundar,, otherwise

Indeed, one can show that there are

{ [LMqIPWIX(W)(1 IX)] - UM,[PIVX(W( 2 ) IX)]] 2(Af'-') + I o Mqp e Mqpi.i
0, otherwise

(6.61)

members 5 in the set of possible boundaries between qM[Pwjx(W(g) J X)J and qm[Pwjx(W)(2) IX)] that can

be used for B3 in equations (6.55) and (6.58).

Corollary 6.3 The probabilistic learning strategy attempts to approximate the a posteriori class probabilities

{PvIR(W(,) I X),.....PwI(W(c) I X)} to a specified level of precision, measured by the probabilistic

complexity Mqp - I of the approximations. As a result, the strategy also attempts to approximate the

a posteriori class differentials {AwlX(WI) IX), ... , AWIX(W(c) I X)} to a specified level of precision,

measured by the differential complexit, Mqj = Mqp of the approximations. Probabilistic learning therefore

requires higher functional complexity and has a lower probability of success than differential learning.

Proof : Since differential learning attempts to approximate the a posteriori class differentials to one sign

bit precision, the increased complexity requirements of probabilistic learning (as measured by its differential

complexity) are self evident. Whether we use the exact expression of (6.50) or the approximation of (6.54), it

is also clear that probabilistic learning places tighter constraints on the summation bounds for the cumulative

multinomial expression. Thus, by the arguments of the proof to theorem 6. 1, the probability that probabilistic

learning will achieve its more precise goal of estimating the die face probabilities with Mqp bits of precision is

less than the probability that differential learning will achieve its minimum-complexity goal of approximating

the a posteriori class differentials to at least one sign bit precision. I

5We use the notation (BM 4 j to denote the cardinalhty of (i.e., the number of eleffients or memberm in) the set 8H.
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We emphasize that the probability of success we discuss in theorem 6.1 and corollary 6.2 pertains

to the goal of approximating {Avwx(W)l) IX) ..... Awx(W~c I X)}I to MqN = I sign bit preci-

sion. This is the same as the goal of identifying the most likely die face W(l) . The probability of

success we discuss in corollary 6.3 pertains to a different, more complex goal: that of approximating

{ZAwIX(Wu() IX) ..... Awlx(W(c) IX)} to Mqa > I bit precision. Corollary 6.3 therefore does

not assert that probabilistic learning is less likely than differential learning to identify the most likely

die face unless the probabilistic complexity allocated for the learning process is inadequate. That is, if

Mqp < Mqpmin in (6.49), there will be insufficient functional complexity to distinguish PwIx(Wj() IX)

from PwIx(W( 2) IX), and probabilistic learning will fail to identify the most likely die face W(i) for any

number of of die casts. If, on the other hand, Mqp > Mqp r. , there will be sufficient functional complexity

to distinguish the a posteriori class probabilities and to approximate the a posteriori class differentials with

high precision. Thus, if the most likely die face is evident, probabilistic learning will identify it - with the

same probability of success that differential learning has - given sufficient functional complexity.

This fact makes sense intuitively: the n casts of the die alone determine whether or not W(•) is

empirically evident. The learning strategy by which we estimate the identity of W(i) has no effect on the

observable statistics of the game; it affects only what we can infer from those statistics. The advantage of

differential learning therefore lies in its ability to identify the most likely die face as soon as it becomes

evident in the sequence of casts, while requiring the least differential complexity necessary to achieve this

goal. Indeed, theorem 6.1 and corollaries 6.1 and 6.2 are the information-theoretic equivalents of theaorem 3.1

and corollary 3.). The minimum-complexity requirement of differential learning is an advantage from the

standpoint of generalization since, under VC analysis 1137, 1361, excessive complexity is anathema.

6.3.3 Discriminant Information versus Probabilistic Information

If we approximate each of the die face probabilities {PwIx(W(i,) IX), .... Pwlx(W(c) IX)} with Mqp =

M - I bits of probabilistic complexity, 6 then we approximate each of the a posteriori class differentials

{Awlx((W(i) IX) ..... Awlx(WJ(c) IX)} with MqA = M bits of differential complexity. This follows

immediately from (6.15) and (6.20), which allow us to express the differentials in terms of the probabilities

and vice-versa. The relationship between probabilistic and differential complexity allows us to make a

direct comparison between the functional complexity requirements of differential learning and probabilistic

learning.

61Recall that the sign bit is superfluous when the fri-i,-point binary representation described in section 6.2 is being used to approximate
a (non-negative) probability.
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The Information-Theoretic Argument for Differential Learning

Occam's razor [130, 21] stipulates that the complexity of an estimate's representation need not and should

not exceed the information contained in the empirical data sample used to compute the estimate. This is

born out by the cumulative probability expressions of sections 6.3.1 and 6.3.2: there is always more probably

Mqa,.in = I bit ofdiscriminant information in i casts ofthe die than there are MqA > 1 bits ofdiscriminant

information. When n is laige, such that the a posteriori class differentials can probably be estimated with

Mq& >» I -bit precision, the information content of the cast sequence justifies our doing this. Equivalently,

we are justified in estimating all the die face probabilities with high precision. However, when n is small -

as it almost always is in real-world learning/pattern recognition tasks - the information content of the cast

sequence justifies no more than our estimating Awix(W(,) IX) with one bit of precision. Equivalently, we

are justified only in estimating the identity of the most likely die face W(1).

6.4 Bounds on the Training Sample Size Requirements of the Differen-
tial and Probabilistic Learning Strategies

Equation (6.27) is an approximate expression of the probability that the discriminant differential 6 W(•) (X)

associated with the most likely die face W( 1) will be positive following n casts of the die X. Equation

(6.54) is an approximate expression of the probability that the estimate Pwlx(W(t) I X) will be greater than

the threshold value 1 and the estimate PwVx(W( 2) IX) will be less than • following n casts of the die.

Thus (6.27) states the approximate probability that the goal of differential learning will be reached in n casts

of the die; likewise, (6.54) states the approximate probability that the weakest goal of probabilistic learning

will be reached in the same n casts.
These two equations can be evaluated numerically in order to estimate via iterative search the minimum

values of n at which the differential (na) and probabilistic (np) learning goals will be reached with

specified probability, given particular values of PwIx(W(I) I X), Pwlx(W(2) I X), and C. The numerically

estimated values of n, and np are generally quite close to the empirical estimates obtained via Monte

Carlo simulations, the one exception being when C is large and Pwlx(W(2) I X) is small. As mentioned in

section 6.3.1, assumption 6.1 - on which the approximations of (6.27) and (6.54) are predicated - fails to

hold under these circumstances, so n& and np tend to be under-estimated.

Since we are looking for a greatest lower bound on n, above which each learning strategy is guaranteed

to achieve its goal, we would prefer estimators of n& and np that are positively biased, rather than negatively

biased. Moreover, the iterative search required to estimate i., and np numerically is comp'itationally

intensive. This motivates us to derive greatest lower bounds on n using classical techniques.
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6.4.1 A Greatest Lower Bound on ,n

For the differential learning strategy, we want to know the value of nai above which the discriminant

differential 6W,, (X) associated with the most likely die face W(I) is non-positive with probability less

than d = I - (t. This is a "one-sided tail" probability, which can be bounded from above by a two-sided

tail probability. Using short-hand notation for Pjvjx(W(i• I X), PIvIx(W(j) I X), and Awix(WW,,, I X),

the bounding inequalities are

P(6w,,M(X) < 0) < P(I6W)(,(X)- A6(W10,)I > A(WO(,)) (6.62)

Var[6 LwO,, (X)] (6.63)

The inequality in (6.62) represents the two-sided upper bound on the one-sided probability, and the inequality

in (6.63) is an application of Chebyshev's inequality (e.g., 133, pg. 219]).

Since AZ(W(,)) = P(W(I)) - P(W( 2)), and we operate under assumption 6. 1, we assume 6W.(,(X) W

P(WOO)) - P(Wt 2)). Although the collective empirical face probabilities of the die are multinomially

distributed, individual face probabilities are binomially distributed (i.e., in any given cast, the face W(j)

turns up with probability P(W(t)) and fails to turn up with probability P(-oW(I)) = I - P(W(1 ))). Thus,

the variance of P(W(,)) is given by

Var[P(W()) = P(W(O ). (! - P(W(t))) (6.64)
n

We make the invalid but simplifying assumption that P(Wt(I)) and P(Wt 2)) are independent. This allows us

to express the variance of JU)M (X) by

Var[bw,,,(X)] % Var[P(W1()] + Var[P(W( 2))]

P4(__ )) (1 - P(L.I(I))) + PP(wO2)). (I - (6(2))))

n

Thus, by (6.62), (6.63), and (6.65), the probability that the discriminant differential will be non-positive (i.e.,

that the most likely die face will not be evident) after n casts of the die is bounded from above as follows:

P(6•.),L (X) < 0) < P(L4l)))" (I - P(U-t:))) + P(L.)( 2)). (I - P(WO(2)) (6.66)n - (P(LW)(1)) - P(03(2)))2
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If we wish this probability to be no more than d = I - a, the number of casts nA must be bounded from

below as follows:

"ýnA[P ))( ] P(LW..)(,) ) (I - P(P.M(j))) + P(W( 2))" (0 - P(P(2 )) (6.67)

I , t '~2  -,d] d -(P(L. 1I)) - P(L(2)))6

• AIW(I))

It is straightforward to show that the condition of (6.67) is equivalent to requiring that one standard

deviation of the discriminant differential 6Lw,(X) not exceed the value vr • A(W( 1)). Thus, if we want

the most likely die face to be evident with probability at least a = I - d = .95, one standard deviation of

6•Aw, (X) must not exceed .224 • A(.)(1 ). Equivalently,

nA[P(P.00)),P(Wt(2)),d] > 20 P(W( 1)) (1 - P(LOML)) + P(L( 2)) (I - P(W(2)))
- ,(P(I)) - O(6.68)

Through Monte Carlo simulations, we have found that the most likely die face is evident with an empirical

probability of at least .95 if 6W(,)(X) does not exceed 1 A(W(t)). That is, ( in (6.68) can, in practice, be

reduced to 9. Appendix J tabulates ,- nA[P(W(I)) ,P(W( 2)),d = .05], given ( = 9, and compares this

bound with empirical values of nA (generated via Monte Carlo simulations) above which the most likely die

face is evident in 95% of the trials.

6.4.2 A Greatest Lower Bound on np,

A greatest lower bound on the sample size rip necessary to guarantee the more rigorous goal of probabilistic

learning is derived in a similar manner. Of course, probabilistic learning implies tighter constraints on

the variance of all the estimated face probabilities, not just P(Wt a)) and P(O. 2)). As a result, ,- np is

substantially larger than -n, , reflecting the greater information requirements of probabilistic learning.

Let us consider the probability of a single die face W(i) turning up on a given cast, versus the probability

of any other die face turning up. As mentioned earlier, the estimated probability of this event P(W(.)) is

binomially distributed when considered in this manner, because the C-sided die reduces to an unfair coin

with face probabilies P(WL()) and P(-,W(i)). In this context, we wish to know the upper bound on the

probability that the estimate P(W(j1 ) will deviate from the true probability P(W(j)) by an amount not less

than F • P(W(fl). Using Chebyshev's inequality once more, the bound is given by

VarrP(Wu )j _ I - P(W) (
P~~j~wtn .P(W,2 .j p E P(W

(e PW(1 ))2- F P(W) (.69

0
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Thus, the greatest lower bound - np on the number of die casts necessary to ensure with probability at least

o = I - d that P(W(i)) does not deviate from P(W(&i) by more than F • P(W01i) is

I - P(d(•) )
-,np[P(W(i)),r,d] > d P(W(,)) (6.70)

A comparison of (6.70) and (6.67) shows that the probabilistic bound is more than -r times the differential

bound - i.e.,

,-np[P(W(i)),-E,d] > ., na,[P(W(1)),P(W(2 )),dJ (6.71)

- unless LA(W(l)) is small in (6.67). Therefore, if we wish P(W(i)) to be within, say, five percent of

its true value, the number of die casts necessary to meet this goal will usually be at least 400 times the

number of casts needed merely to identify the most likely die face. If P(W( i)) is appreciably smaller than

P(W(A))) and P(WM2)), the disparity between -- np[P(W(i)),e,d] and nA[P(W(.)),P(W(2)),dI is even

greater than indicated by (6.71). Thus, the bounds on n& and ntp in (6.67) and (6.70) quantify the assertions

of theorem 6.1 and-its corollaries.
By (6.71), the training sample sizes of (6.67), necessary to guarantee a specified level of generalization

via differential learning, are typically orders of magnitude smaller than those of (6.70), necessary to estimate

probabilities with a specified level of precision. This indicates that current probabilistic extensions of the PAC

learning paradigm [133] to stochastic concepts on uncountable feature vector domains (e.g., [59, 60, 1461)

are likely to over-estimate the training sample sizes necessary for good generalization when the learning

objective is merely pattern classification.

6.5 Extending the Rigged Die Paradigm to the General C-class Learn-
ingfPattern Recognition Task

It is straightforward to extend this chapter's information-theoretic paradigm from a single die to both

countable and uncountable feature vector spaces. The extension to the countable feature vector space is quite

simple, following immediately from the realization that a single die represents a single point on the countable

feature vector space X. Thus, we move from a paradigm in which a single rigged dice game is played to

one in which a countably finite or infinite number of games are played. The choice of die to be cast is itself

modeled as an unfair die with P sides, corresponding to the cardinality lxi (where P may be infinitely

large). The probabilities associated with each of the P faces reflect the probability mass function of the

feature vector X. From this point, the analysis is essentially the same as that for the single dice game.

The extension to the uncountable feature vector space follows along the same lines as that for the countable

space. We partition the uncountable feature vector space into P disjoint "resolution cells" X, ... Xp
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such that

P

U XP = X (6.72)
p= I

We associate some nominal pattern (i.e., value of the feature vector) XP with each XP,• and view the a

posteriori class probability Pwlvx(OW. I X,) as the expectation

Pwx(WoilX0) =J, Pwlx(. ilX) • Px(X)dX (6.73)

Through this artifice, the uncountable space looks just like the countable one, and the analysis follows

naturally. As the number of die casts grows large, we simply allow the number of resolution cells to grow

until

lir Pwx(W,-),IX = PWIx(W, IX) , jXI = 0 (6.74)

... precisely the mechanism we employ in the derivations for probabilistic and differential learning in

chapter 2. Thus, the mean values EX [,-, np[P(u)(i)),Ed)I, and EX In, JP(W (1),P()P (2)),d]l, can be

derived in order to determine the expected number of examples of X needed to learn the most likely class

W. - W(A) for each pattern in feature vector space. Likewise, EX [Mqpmi,] can be derived in order to

determine the average minimum functional complexity necessary for probabilistic learning.

Our objective in describing the procedure by which the die paradigm is extended to the general feature

vector space is not so much to do actual modeling or sample complexity computations (see [8] and [146]

for lovely, probabilistically motivated sample complexity analyses along these lines) as it is to point out

that theorem 6. I and its corollaries hold for the general feature vector space as well. There is at least one

important restriction, however. The information-theoretic analysis of this chapter operates under an agnostic

assumption. In terms of dice, the assumption holds that information regarding one die conveys nothing

about any other die. In terms of feature vector space, the assumption holds that information regarding the

probabilistic nature of the feature vector at one point on X conveys nothing about the the probabilistic

nature of the feature vector at any other point on X. Clearly, feature vectors for which a proper parametric

model exists violate the agnostic assumption, in that information regarding the probabilistic nature of the

feature vector at one point in X conveys information about the the probabilistic nature of the feature vector

at all points in X. Under these gnostic conditions, the information-theoretic predictions of the sample sizes

necessary to characterize the feature vector (either probabilistically or differentially) will be pessimistic (i.e.,

excessive, perhaps by orders of magnitude). Moreover, corollary 6.2, which asserts that differential learning

requires the smallest number of die casts to determine the most likely face, will not always generalize
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to the statement that differential learning requires the smallest sample size necessary to yield Bayesian

discrimination. We remind the reader that the gnostic condition (i.e., the case in which the proper parametric

model of the feature vector exists) and its relationship to differential and probabilistic learning strategies are

treated extensively in chapters 3 and 4.

The minimum-complexity requirements of differential learning do not depend on the existence of a

proper parametric model, but hold in all cases. This trait ensures that learning can be done with the simplest

model possible, which in turn ensures that the model will generalize well, independent of the feature vector's

probabilistic nature (section 3.5).

6.6 Summary

The rigged game of dice lies at the heart of all statitical pattern recognition tasks. By analysing the

requirements for identifying the most likely face of the unfair die, we derive information-theoretic proofs that

correspond to the estimation and set-theoretic proofs of chapter 3. Those proofs establish the asymptotically

efficiency of differential learning, as well as its minimal classifier complexity requirements. The proof that

differential learning requires the fewest casts of the die to identify the most likely die face does not extend to

a blanket assertion that differential learning is efficient for both small and large training sample sizes, since

probabilistic learning can be more efficient for small training samples when paired with a proper parametric

model (.,call s,;ction 16). However, the pi oof does confiam the asscrtion that differential learning is efficient

for small as well as large training sample sizes when the hypothesis class is an improper parametric model.
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Chapter 7

* Implementing Differential Learning

Outline

We describe the pragmatic issues that arise when one implements differential learning via the CFM objective

function. Specifically, we discuss regulation of the CFM confidence parameter, the role of CFM and

confidence in accepting or rejecting classifications, issues of representation, and discriminator complexity.

* We use the Iris data collected by E. Anderson, and subsequently used by R. A. Fisher in his celebrated paper

on linear discriminants [34] to illustrate the importance of these issues and to describe practical means of

addressing them.

7.1 Introduction

Part I describes the theory of differential learning, but it does not discuss the details of implementing the

theory. The two bodies of knowledge are linked, but there is a point at which scientific rigor inevitably gives

way to practical considerations. This chapter discusses such considerations, and serves as a link between the

theory of part I and the applications of that theory in the chapters that follow.

We describe three hypothesis classes that we use in the experiments of this chapter and all that follow.

We then describe the Iris data collected by E. Anderson [3] and subsequently used by R. A. Fisher in his

1936 paper on linear discrimitants [34]. We show that a linear classifier can learn all but two of the 150 Iris

examples. We then use this learning task to illustrate the following practical considerations of differential

learning:

"* How the confidence parameter V, affects learning, and how it can be regulated during learning to

control the level of detail to be learned from the feature vector X.

"* How V, is practically related to subsequent acceptance or rejection of test example classifications.

185
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"* How one's representational choice (i.e., one's a priori choice of hypothesis class) affects differential

learning.

"* The relationship between low classifier complexity and efficient learning.

Throughout this chapter and most of those that follow, we contrast differential learning with probabilistic 0
learning under controlled experimental conditions.

7.2 Three Hypothesis Classes

In this and the remaining chapters, we employ classifiers drawn from three hypothesis classes, corresponding

to three functional bases. Different functional bases yield different representations or models of the data. We

describe these hypothesis classes in the following three sections.

7.2.1 The Linear Hypothesis Class 0

The ith discriminant function of a discriminator belonging to the linear hypothesis class is given by

gt(X1O) = XVT ,, (7.1)

wher2 the notation zT denotes the transpose of vector z, X is the N-dimensional feature vector, and X' is

the (N + I )-dimensional augmented feature vector formed by prepending a single element of unit value to

X (e.g., [29, pp. 136-1371):

X [ (7.2)X

The parameter vector for the ith discriminant function is part of the over-all parameter vector for the

discriminator: 6i C 0 E e ; 6, E RN+ . We refer to the classifier with such a discriminator as a linear

classifier because it forms piece-wise linear class boundaries on X.

7.2.2 The Logistic Linear Hypothesis Class

The ith discriminant function of a discriminator belonging to the logistic linear hypothesis class is given by

gi(X10) = [I + exp (-XITi)] , (7.3)

logistic function of X"T 6i

where X, XV, and Vi are as described above. We refer to the classifier with such a discriminator as a

logistic linear classifier because it employs logistic discriminant functions, yet it forms piece-wise linear

0
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class boundaries on X . This latter characteristic is clear in the solution of the W1i 1Wj boundary equation,

given the ith and jth discriminant functions; the solution is linear in X:

g,(XI0) = g,(XlO) iff X'T [0, - o,] = 0 (7.4)

Note that when the discriminator is formed by cascaded layers of logistic functions it constitutes a multi-layer

perceptron (e.g., [ 1201), and the resulting class boundaries it forms on X are non-linear in X.

The Kullback-Leibler-generated logistic linear classifier: When generated probabilis-

tically via the CE objective fioiction, the logistic linear classifier is identically the lo-

gistic discriminant analysis model (i.e., the logistic regression model used for classifica-

tion). See appendix F for proofs of this assertion, which originate with While and Hjort.

0
7.2.3 The Gaussian Radial Basis Hypothesis Class

The ith discriminant function of a discriminator belonging to the Gaussian Radial Basis hypothesis class is

given by

g!(X 1.) (exp (X _ Ai)T EI (X _ . (7.5)

where N denotes the dimensionality of the feature vector, and the ith mean /i and covariance matrix Ei are

subsets of the over-all discriminator parameter vector 0. We refer to the classifier with such a discriminator

as an RBF classifier, recognizing that it constitutes a Gaussian radial basis function (RBF) classifier (e.g.,

[18, 95, 104, 92]) when the discriminator is formed by cascaded layers of these functions. We also use a

modified form of RBF classifier described in appendix K; we refer to the differentially-generated variants as

Differential Radial Basis Function (DRBF) classifiers.

7.3 Learning to Identify the Irises of the Gaspe Peninsula

Fisher's Iris data is a well-known database consisting of four physical measurements (petal length and

width and sepal length and width) taken from 150 Iris specimens, 50 examples from each of three species.

E. Anderson collected the data [3), and R. A. Fisher subsequently used it in his seminal paper on linear

discriminants [34]. We, in turn, use the dotta to illustrate the pragmatic issues of differential learning.

Figure 7.1 shows the Iris data projected onto two of the four dimensions of feature vector space X. The

figure is based on figure 6.11 of [29]; the reader will note differences in the data locations between figure 7.1

'We thank Professor Casimir Kulikowski of Rutgers University for providing us with an electronic version of Anderson/Fisher's
original Iris data.
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and its progenitor; this is because Duda and Hart depicted multiple examples having the same petal length

and width by perturbing the data points in their diagram - a procedure that we omit.

The empirical class distributions have a strong correlation with the histograms Fisher generated from his

linear discriminant function (cf. figure 1, 134]). Iris setosa is easily distinguishable from the other two species

(we will use the terms "class" and "species" synonymously throughout the remainder of this chapter).

Iris versicolor (W02 ) and Iris virginica (W 3 ) have empirical distributions that overlap to some degree, as

projected onto this two-dimensional sub-space of X. The region of overlap is depicted by the blue-to-red

color bar underneath the examples. Boundary 132,3 separates the empirical distributions of W2 and W.4

with a relatively small number of errors. The color bar underneath is a means of encoding the position of

the superimposed examples relative to boundary B2,3 on the 2-dimensional (petal length and petal width)

sub-space of X: examples in the dark red region are well into the W.3 side of the boundary; examples in the

dark blue region are well into the L02 side of the boundary.

In reality, 132,3 is the I-dimensional projection of a hypothetical 3-dimensional boundary in X =

The color bar is the graphical means by which we transform the two-dimensional sub-space of figure 7.1 into

a single dimension perpendicular to the projection of B2,3.. We encode position along this real dimension by

color and intensity: examples superimposed on increasingly red portions of the color bar have increasingly

positive values (i.e., they are more to the right of B2,3 ); those on) increasingly blue portions of the color bar

have increasingly negative values (i.e., they are more to the left of 132,.3 ). Figure 7.2 shows all the confusable

examples (i.e., all those in the vicinity of B2,23 in figure 7.1 and, as a result, superimposed on the color bar) in

the disjoint 2-dimensional sub-space of X comprising the sepal length and width features. The true class of

each example in figure 7.2 is indicated by its shape. The petal length and width of each example in figure 7.2

is indicated by the color/intensity of its shape, which denotes the position of the example with respect to the

projection of boundary L32,3 in figure 7. 1.

The projection of boundary 132,3 onto sepal length/width space in figure 7.2 obviously depends on the

values of petal length and width. After some study of figures 7.1 and 7.2, it should be clear that a linear

classifier will produce the fewest errors if the projection of 132,1 onto sepal length/width space is B2,3A

for values of petal length and width corresponding to the blue region of figure 7. 1. As we transition from

this region of feature space to the one corresponding to the red region of figure 7. 1, the projection of B2,3

onto sepal length/width space in figure 7.2 transitions from B2,3A to B2,3B. As a first approximation to the

full 3-dimensional projection of boundary L32,3, we can imagine that boundary 132,A in figure 7.2 applies

to all blue-colored examples (i.e., all those to the left of L32,3 in figure 7.1), and boundary B2,31 applies

to all red-colored examples (i.e., all those to the right of 132,3 in figure 7. 1 ). A linear classifier with such a
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Figure 7. 1: Two of the four features (petal length and width) E. Anderson measured on the Irises of the
Gaspe Peninsula 131 (see appendix L). This figure is based on figure 6.11 of Duda & Hart 1261. With these
two features alone, Iris setosa are clearly distinguishable from the two other species (i.e., classes). Class
boundaries 131,2 and L32,3 separate the classes with relatively few errors. The blue/red color bar denotes the

* position of the superimposed examples relative to boundary 132,3. The color blue denotes the W2 side of
the boundary; red denotes the U)3 side of the boundary; the more intense the color, the farther the Euclidean
distance a superimposed example is from the boundary. The examples superimposed on the red/blue graphic
are the confusable examples of Iris versicolor (UW2 ) and Iris virginica (U.3 ) because they straddle the optimal
linear boundary between these two classes. These confusable examples are shown in figure 7.2. Examples 83
and 133 (circled) cannot be learned by a linear classifier.

0\

0- ,,



0

190 Chapter 7: Implementing Differential Learning

Sepal Length (cm)

4.5 5.0 5.5 6.0 6.5 7.0

3.0,

a lnrcsi A4)~ Ab, a a,,/~s

U) 2.5 A MA

S....

Cz)

%/,

Cannot be learned by t4 r jp Tds
a linear classifier AA but tm

2.0 5

A* 

-

C34

Figure 7.2: The confusable examples of figure 7.1, plotted as a function of the other two features (sepal
length and width). Each example's shape denotes its true class. The color and intensity of the shape denote
the example's position relative to boundary 32,3 in figure 7.1, in accordance with the blue/red color bar of
that figure. If the example is blue (i.e., falls to the left of boundary B2,3 in figure 7.1), boundary B2,3A

applies in this figure. If the example is red (i.e., falls to the right of boundary B2,3 in figure 7.1), boundary
132,3B applies in this figure. This linear model correctly classifies all but two of the 150 examples; it cannot
learn examples 83 and 133. These two examples are circled in figure 7.1; note that they are the two closest
examples to boundary L32,3 in that figure.

boundary will misclassify examples 83 and 133,2 which lie very close to the projection of B2,3 in figure 7.1

(they are the circled examples in that figure).

The reader should note that boundary B2,3 and its projections are not unique, but represent a nominal

form of the minimum-error linear boundary between Iris classes W 2 and W 3 . Thus, we would expect an

efficient learning algorithm to produce a linear classifier that correctly identifies all Iris examples except

numbers 83 and 133. We illustrate the implementational issues of differential learning by showing that it

2We use the indeces 0 -* 149 for the 150 examples in the the database (see appendix L). Other authors use the indeces I -4 150.
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produces just such a linear classifier.

7.4 Controlling the Confidence Parameter

Section D.4 proves that the CFM confidence parameter V" must be proportional to Pwlx(W. I X), the largest

a posteriori class probability for X, in order for the classifier to learn the Bayes-optimal (i.e., most likely)

class W. (recall definition 2.1, page 17). Indeed, as PWlx (W. IX) and/or the associated discriminant

* differential3 6. (X 10*) decrease in the vicinity of the class boundaries, V, must, by (2.102) and (2.104), be

decreased in order to learn W.. As stated in sections 5.3.6 and 5.4, the relationship between small values

of PwIx(W. IX) and/or 6.(X 10*) and small values of -/' accounts for our use of the term "confidence"

parameter for V/). If ', must be small to learn a training example Xi, then we should literally have low

*0 confidence that its associated class label W is the Bayes-optimal class W..

In fact, the effect of i, on learning is not local, as one might infer from sections 2.4 and D.4, rather it is

global (i.e., its value for one example affects the learning of all other examples). One's a priori choice of

hypothesis class bounds the classifier's functional complexity, and one can think of the differential learning

* procedure simply as a means of allocating that complexity in such a way that CFM is maximized. Complexity

is allocated proportional to the confidence associated with each training example, so a fixed value of V' for

all training examples determines which examples can be learned and which, if any, cannot be learned, given

the hypothesis class. If the training sample size is large, then we are justified in learning all examples -

* even those in which we have relatively low confidence - since we assume that the sample is representative

of the underlying probabilistic nature of X. If on the other hand the training sample is small, we are unwise

to learn examples in which we have low confidence, since they may not be representative of X. Instead we

would be wise to learn only those examples in which we have relatively high confidence.

0 The Iris data in figures 7.1 and 7.2 illustrate that training samples usually contain both "easy" examples

(i.e., ones that are easily classified) and "hard" examples (i.e., ones that aren't so easily classified). Recall

our definitions of easy and hard examples in section 5.4. Probabilistically, the easy example is found far

from the Bayes-optimal class boundaries on X, near a mode of its class-conditional pdf; its a posteriori

class probability Pwjx(W. I X) and the associated discriminant differential 6.(X I 0") are therefore large,

allowing it to be learned with high confidence V/,. The hard example is found in the vicinity of the class

boundaries on X , in a "tail" of its class-conditional pdf. In these tails Pw 1x(W. I X) and/or 6.(X I )

'Recall from section 2.4 that 6.(Xl09) denotes the discriminant differential g.(Xl0') - maxko g. (XI0"), where the
subscript - denotes the index of the most likely class W.. The notation also indicates that the discriminant differential is the one
generated by the discriminator with the CUM-maximizing parameterization 0". Throughout the present discussion, we assume that
the discriminator possesses sufficient functional complexity to learn the Bayes-optimal classifier of X. As a result, we assume that
6. (X 10*) is positive, as long as V/Y is sufficiently small.
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are relatively small, so the hard example can be learned only with low confidence if it can be learned at all.4

The challenge, therefore, is to develop a learning procedure that learns easy examples with high confidence

and hard ones with low confidence, allocating the functional complexity of the classifier in commensurate

fashion.

Figure 7.3 illustrates the output state of a 15-parameter5 logistic linear classifier projected onto reduced

discriminator output space (definition 5.2, page 116). This is the reduced output state after the classifier

has attempt to learn all 150 examples of the Iris data with V, = 1 (350 epochs). Reduced discriminator

output space is shown in the upper right of the figure, and the projection of the CFM objective function onto

the reduced discriminant continuum (i.e., the domain of 6 = y, - T,) is shown in the lower left of the

figure. The discriminant differentials for most of the training examples are large, corresponding to output

states that are nearly binary. Two of the nine examples that are not learned have relatively laig&.. discriminant

differentials, indicating that the classifier is relatively confident in its incorrect classification. The remaining

seven misclassifications engender very small discriminant differentials (these examples appear in the lower

left and upper right corner of reduced discriminator output space in figure 7.3). Recall from section 2.4 that

the "linear" form of CFM (associated with the highest confidence value of unity) cannot learn examples for

which PwIx(W. i X) < 1 : the discriminant differential that maximizes CFM is zero in these cases. The

empirical a posteriori class probabilities of W 2 and W 3 are approximately 1 in the vicinity of L2,3, which

accounts for the tiny discriminant differentials exhibited by seven of the nine misclassified examples. Most

of the remaining examples are classified with high confidence, as indicated by the large positive discriminant

differentials they engender.

Figure 7.4 shows the same classifier after learning with /, = 0.6 (350 epochs). Three examples (70, 83,

and 133) are un-learnable at this level of confidence. Note that no examples generate binary output states:

the largest discriminant differential is approximately 0.7. Likewise, no learned or transition examples exhibit

discriminant differentials less than 0.3, in contrast with figure 7.4. The un-learned examples all exhibit

discriminant differentials in the vicinity of -0.4. By reducing the confidence with which the classifier learns,

we allow it to allocate its functional complexity in such a way that it learns more of the hard examples.

Figure 7.5 shows the effect of differential learning over 350 epochs when the confidence parameter is

gradually decreased from a starting value of 0.6 at epoch 0 to a final value of 0.1 beyond epoch 200. The

"gradual" reduction is linear (i.e., V/) is reduced by - at the end of each epoch, beginning with epoch

0, and ending with epoch 200). We find that this form of scheduled confidence reduction allows the classifier

to learn the easy examples with high confidence and the hard ones with (necessarily) lower confidence. After

350 epochs, only examples 83 and 133 remain un-learned, as our analysis in section 7.3 predicts for an
4For stochastic feature vectors with overlapping class-conditional pdfs, the Bayes error rate is non-zero: some example/class label

pairs are inevitably un-learnable.
"There are C = 3 discriminant functions, and the augmented feature vector has N + I = 5 elements. Therefore the classifier

has 3 - 5 = 15 parameters.
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optimally-generated linear classifier. The largest discriminant differential exhibited by a learned example is

now approximately 0.68; the minimum discriminant differential is approximately 0.07 for the few learned

examples that fall near the reduced discriminant boundary (definition 5.5). Figure 7.6 compares histograms

of the classifier outputs corresponding to figures 7.4 and 7.5 respectively. For V/' = 0.6, outputs yi and P3

are binary for most examples; output Y2 is approximately normally distributed about a mean of 0.45. When

V, is reduced to 0.1 in the scheduled manner described above, the distribution of Y2 becomes bimodal and

outputs yj and y.1 become noticeably less binary. These changes are sufficient to learn example 70 (cf.

figure 7.4 versus 7.5), one of the three un-learnable examples for V/' = 0.6 and, by its proximity to 82,1

and 132,3B in figures 7.1 and 7.2, one of the hardest examples that a linear classifier can learn.

Differential learning with high confidence focuses on the easy examples because they have a large

a posteriori probability PwIx(W-. I X) associated with the Bayes-optimal class W. and they generate a

* large discriminant differential 6. (X 106) (again, recall the relationships of (2.102) and (2.104)). In turn,

PWlX(W. IX) and 6.(X 18*) are large where the associated class-conditional pdf pxllv(X I.W.) peaks

- that is, around its mode(s). As learning confidence is reduced, focus shifts from the modes of the training

sample's empirical class-conditional distributions (i.e., the easy examples) to the tails (i.e., the hard examples

in the vicinity of the class boundaries) - a phenomenon illustrated in figures 7.4 - 7.6. In this sense, one

can think of the "outlier" examples of a given class as ones containing the fine details (encoded by X ) that

distinguish one class from another. By beginning with the easy examples and gradually proceeding to the

hard ones, differential learning with scheduled confidence reduction first learns the gross characteristics of

each class and then focuses on the details that distinguish each class from all the others.

7.5 Focussing on the Un-Learned Examples

0 Scheduled reduction of V? has added benefits

"* As V1 -+ 0+ and the synthetic CFM sigmoid becomes steeper, more training examples fall into

the "learned" category (i.e., they exhibit positive discriminant differentials that are large enough to

generate the maximum CFM value of unity). Since the derivative of the synthetic CFM objective

function is zero for learned examples, these examples have no effect on learning.

"* Since the synthetic CFM derivative is zero for learned examples, the learning procedure can skip the

parameter adjustment phase associated with learned examples. For example, a differentially-generated

neural network classifier that uses backpropagation need not backpropagate on the learned examples.

As learning proceeds and most examples become learned, this results in substantial computational
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Figure 7.3: Thie 15-parameter differential logistic linear classifier's output state -- as projected onto the
reduced discriminant continuum - after attempting to learn all the Iris data with high confidence. Recall
from chapter 5 that Yr denotes the classifier output corresponding to the correct class for each example, and
yT, denotes the largest other classifier output. The confidence parameter of 1.0 (set prior to learning) results
in a nearly linear form of the CFM objective function (lower left), which tends to engender binary output
states in the classifier (most examples appear in the lower right comer of the display). The classifier cannot
learn 9 of the 150 examples with this high level of confidence. Seven of these 9 un-learned examples occur
at (yr 95 0,T, -L 0) or (y, -u I T, -u I).
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Figure 7.4: The differentially-generated logistic linear classifier's output state after attempting to learn the
Iris data with moderate confidence. The confidence parameter of 0.6 allows the classifier to learn all but
three of the 150 examples. Note that the output state of the classifier is no longer binary.
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Figure 7.5: The differentially-generated logistic linear classifier's output state after attempting to learn the
Iris data with low confidence. The confidence parameter of 0. 1 allows the classifier to learn all but two of
the 150 examples. Across many independent trials, the two un-learnable examples are consistently 83 and
133: these are the examples shown to be un-learnable by a linear classifier in figure 7.2.
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Figure 7.6: Left: Histograms of the output states for the classifier in figure 7.4 after 350 learning epochs:
V, = 0.6. These histograms correspond to the reduced discriminator output state in figure 7.4. Right:
Histograms of the output states for the same classifier (figure 7.5) after 350 learning epochs: V/' is reduced
from 0.6 to 0. 1 over the first 200 learning epochs. These histograms correspond to the reduced discriminator
output state in figure 7.5.

savings.
6

In short, differential learning with scheduled confidence red,.rtic", focuses on learning the un-learned

examples.

Figure 7.7 illustrates that the easy learning proceeds relatively quickly, and the hard learning proceeds

relatively slowly.7 The figure shows the learning curve for the classifier with scheduled confidence reduction,

6Haffneret al employ an analogous form of focussed probabilistic learning in [48j. They use the mean-squared-enfor(MSE) objective
function and ignore training examples that generate MSE less than a human-specified threshold value. Since there is no monotonic
relationship between an example's MSE and whether or not it is correctly classified, the method does not necessarily focus on un-learned
examples. rather, it focuses on examples with relatively high MSE. Nevertheless, the motivation for the technique is the computational
savings it produces - a motivation that we both acknowledge and share.7Please see section 8.2 for a description of the experimental protocols we employ throughout this text when comparing differentially-
generated classifiers with probabilistically-generated controls.
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Figure 7.7: The empirical error rates (training sample with all 150 examples) for the 15-parameter logistic
linear classifier shown in figure 7.5 as it learns differentially (CFM). The classifier's empirical error rate after
350 learning epochs is 1.3 (+2.5/-1 .3)%.

shown in figure 7.5. The dark gray curve shows the classifier's training sample empirical error rate as learning

progresses; 95% confidence bounds are superimposed on the curve periodically. The light gray background

shows the associated value of CFM as learning proceeds. The classifier learns to distinguish the members of

W1 from members of the other two classes in fewer than five epochs. By 75 epochs the classifier has learned

all but nine of the hard examples; it then requires approximately 220 epochs to learn all but two of those nine

hard examples. Owing to the computational savings associated with learned examples, the actual number of

computations per epoch decreases proportional to the fraction of learned examples in the training sample. As

a result, the last 150 learning epochs (associated with the minimum confidence value of 0. 1) proceed more

rapidly than the early learning epochs.

Figure 7.8 shows the learning curve for the logistic linear classifier that employs probabilistic learning

via the MSE objective function. It learns the easy examples faster, and the hard ones more slowly than its
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Figure 7.8: The empirical errcr rates (training sample with all 150 examples) for the 15-parameter logistic
liner classifier as it learns probabilistically (MSE)). The classifier's empirical error rate after 350 learning
epochs is 2.0 (+2.9/-2.0)%.

differentially-generated counterpart - a trend that we find common across a wide range of learning tasks.

Figure 7.9 shows the final state of this classifier, after 350 learning epochs. All learning conditions are

identical to those for the differential model, except that the MSE objective function is minimized in lieu of

maximizing the CFM objective function. The MSE-generated classifier cannot learn examples 70, 83, and

133. Note in figure 7.9 that the easy examples (corresponding to the modes of the empirical class-conditional

example distributions) dominate the learning procedure: y, the output representing the true class of a given

training example, is frequently unity, and T', the largest other output, is generally less than 0.5. The harder

examples, corresponding to the tails of the empirical class-conditional example distributions, tend to cluster

along contours of constant MSE. Many of these examples exhibit zero values of T (i.e., they appear all along

the line T = 0 in figure 7.9). This output state shows that probabilistic learning engenders classifier outputs

that approximate the empirical a posteriori class probabilities of X ,o !he degree of precision allowed by the
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Figure 7.9: The 15-parameter logistic linear classifier's output state -- as projected onto the reduced
discriminant continuum -- after attempting to learn all the Iris probabilistically (MSE -- see figure 7.8).

hypothesis class.

Figure 7.10 shows the learning curve for the logistic linear classifier that employs probabilistic learning

via the Kullback-Leibler information distance (CE objective function). Like the MSE-generated classifier, it

learns the easy examples faster, and the hard ones more slowly than its differentially-generated counterpart.

Figure 7.11 shows the final state of this classifier after 350 learning epochs. All learning conditions are

identical to those for the differential model, except that the CE objective function is minimized in lieu of

maximizing the CFM objective function. Like the MSE-generated model, the CE-generated classifier cannot

learn examples 70, 83, and 133. Note again, the easy examples (corresponding to the modes of the empirical

class-conditional example distributions) dominate the learning procedure: y, the output representing the

true class of a given training example, is frequently unity, and y-, the largest other output, is generally

less than 0.5. The harder examples, corresponding to the tails of the empirical class-conditional example

distributions, tend to cluster along contours of constant CE. Many of these examples exhibit zero values of

T'. Again, this kind of output state reflects the general nature of probabilistic learning.
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Figure 7.10: The empirical error rates (training sample with all 150 examples) for the 15-parameter logistic
linear classifier shown in figure 7.3 as it learns probabilistically (Kullback-Leibler CE). The classifier's
empirical error ra., after 350 learning epochs is 2.0 (+2.9/-2.0)%.

In fairness to the probabilistic models, they are not significantly worse than the differential model.

Figure 7.1 clearly indicates that the empirical class-conditional example distributions are reasonably well

separated and unimodal - conditions for which the logistic linear classifier is a reasonable approximation

to a proper parametric model of X (see definition 3.13 and appendix F). As a result, we expect -

and obtain -reasonably good discrimination from the probabilistically-generated classifiers. As we shall

see in section 7.7, the disparity between differential and probabilistic learning can be significant when the

hypothesis class is not a proper parametric model of the data.
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Figure 7.11: The 15-parameter logistic linear classifier's output state -- as projected onto the reduced
discriminant continuum - after attempting to learn all the Iris probabilistically (CE - see figure 7. 10).

7.6 Rejecting the Classification

Stochastic concepts are sometimes confusable with one another since the class-conditional pdfs of their

common feature vector overlap. Just as there are easy and hard learning examples, there are easy and hard test

examples. When human subjects cannot identify a concept with high confidence they usually give a "don't

know" classification. Synthetic pattern recognition systems often incorporate an analogous mechanism

that rejects test classifications that do not meet a minimum standard of "confidence". Classical decision

theory formalizes the mechanism by which classification hypotheses are rejected. In general the mechanism

establishes a reject region (e.g., [40, pp. 78-82]) about the class boundaries on X inside which the classifier

always yields a "don't know" classification.

Since differential learning is a discriminative form of learning, which focuses on estimating the class

boundaries on X, it is naturally compatible with the rejection mechanism described above. The reject

region on X maps to reduced discriminator output space in a straightforward manner. Figure 7.12 illustrates

this for the differential logistic linear classifier depicted in figure 7.4. The light gray shading on reduced
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Figure 7.12: Figure 7.4 shown with a rejection threshold of bel-r, - 0.*35 (see text) in light gray. For this

level of confidence ( 0.6) and the rejection threshold shown, the classifier rejects 1.3% of the samples and

misclassifies 1.3%.



204 Chapter 7: Inpleinenting Differential Learning

# IV .26

00

Rejected

10

Es0.5 1.0 Training Example

CF- -0

o' /

Figure 7.13: The differentially-generated logistic linear classifier's output state after attempting to learn the
Iris data with lower confidence (0.26), shown with a rejection threshold of 6 ,,.d = 0. 15 (see text) in light
gray. For this level of confidence and the rejection threshold shown, the classifier rejects 3.3% of the samples
and misclassifies 0.7%.
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Figure 7.14: Figures 7.9 (MSE, top) and 7.11 (CE, bottom) shown with a rejection threshold of 6 itj• = 0.35
in light gray. Top: The MSE-generated classifier rejects 1 2.7% and misclassifies 0% of the training sample for
the 6•,fjea = 0.35 rejection threshold. The darker gray region corresponds to a (larger) reject region defined in
terms of MSE; its rejeetion/misclassification characteristics are worse. Bottom: The CE-generated classifier
rejects 14% and misclassifies 0.7% of the training sample for the 4,Yec = 0.35 rejection threshold. The

* darker gray region corresponds to a (larger) reject region defined in terms of CE; its rejection/misclassification
characteristics are worse.

0.
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discriminator output space (upper right) and the reduced discriminant continuum (lower left) denotes the

reject region. After learning the training sample, we can set the reject region in such a way that we obtain an

acceptable trade-off between error rate and rejection rate (i.e., the percentage of the total sample for which

the classification is rejected). The region is specified by a minimum discriminant differential 6reject below

which the classification is rejected. Of course, given test cases for which we don't know the true class label,

we always assume that the discriminant differential is positive - that is, we always assume the classification

is correct. Given the informed perspective from which we know the true class label of each example, the

discriminant differential might be negative. Thus, the reject region spans the interval [-S,•jec, ,je]in

reality. In the experimental chapters that follow, we use a simple default setting for &qc, , based on the value 0

of V/,: 6,j,, is one half the value of 6 at the upper end of the synthetic CFM sigmoid's linear transition leg

(i.e., ½ of xp, in figure D. I ).8

Figure 7.12 illustrates a reject region corresponding to a 6recr that is twice the default value. We double

the default width of the reject region because the classifier has learned all 150 Iris examples; we set a higher

than normal standard of confidence below which we reject the classification for the purpose of illustration.

Given' this reject region, the classifier rejects 1.3% (2) of the training sample classifications, at the cost of

misclassifying 1.3% of the sample. If we decrease the confidence with which we learn to 0.26 (a result not

previously shown) and again set a 6 ,jea that is twice the default value, we reject 3.3% (5) of the training 0

sample at the cost of misclassifying 0.7% (I). This scenario is depicted in figure 7.13. Finally, if we apply a

6,eje that is twice the default value to the results of figure 7.5, we reject none of the training examples at the

cost of misclassifying 1.3% (2).

The tradeoff between error rate and rejection rate in these three scenarios remains both balanced and

relatively stable across a wide range of learning confidence parameters, corresponding to a wide range of

reject regions. This is not the case for the classifier that employs probabilistic learning. Since the classifier that

learns with 4, = 0.6 in figures 7.4 and 7.12 exhibits the same empirical error rate as the probabilistically-

generated variants in figures 7.9 and 7.11, we apply the reject region shown in figure 7.12 to figures 7.9 and

7.11 as a means of fairly comparing differential and probabilistic learning. Given this reject region, depicted

by the light shading in figure 7.14, the MSE-generated classifier rejects 12.7% (19) of the sample at the cost

of making no misclassifications; the Kullback-Leibler (CE) variant rejects 14% of the sample at the cost of

misclassifying 0.7% (1). Thus, probabilistically-generated classifiers reject a significantly higher proportion

of examples without attaining a significantly lower error rate. If the reject region is defined in terms of

the MSE or CE that an example (always assumed to be correctly classified) elicits, the reject regions are

depicted by the light and dark shading in figure 7.14. The resulting rejection/misclassification statistics for

aWe do not proffer a theoretically justified approach to setting 6mjec, ; although we believe that this is an important avenue of

research, we limit ourselves to this acknowledgement in the interest of bounding the present text's scope.
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Figure 7.15: The empirical error rates (training sample with all 150 examples) for the 15-parameter linear
classifier as it learns differentially (CFM). The classifier's empirical error rate after 350 learning epochs is
1.3 (+2.5/-1.3)%.

these MSE/CE-based reject regions are worse than those for the 6,bja-based regions - further evidence

that minimizing an error measure is not monotonically related to minimizing the classifier's error rate.

7.7 The Importance of Representational Choices

In section 7.5 we found that differential learning did not produce a logistic linear classifier with a significantly

lower empirical error rate than its probabilistically-generated counterparts. We attributed this to the logistic

linear hypothesis class, which is a good approximation to the proper parametric model of the Iris feature

vector. In this section we explore the effects of changing the hypothesis class from the logistic functional

basis to alternative functional bases: linear and Gaussian radial basis.
Figure 7.15 shows the learning curve for a simple linear classifier (i.e. one with discriminant functions
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Figure 7.16: The 15-parameter differentially-generated linear classifier's output state-- as projected onto the
reduced discriminant continuum - after attempting to learn all the Iris with low confidence. The classifier
cannot learn examples 83 and 133 (see figure 7.2).
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Figure 7.17: The empirical error rates (training sample with all 150 examples) for the 15-parameter linear
classifier as it learns probabilistically (MSE)). The classifier's empirical error rate after 350 learning epochs
is 14.7 (+6.2/-5.8)%.

that are simple linear functions of the feature vector). The classifier employs differential learning with

scheduled confidence reduction from 0.6 at epoch zero to 0.04 beyond epoch 200. The only appreciable

learning difference between this linear classifier and its logistic linear counterpart shown in figure 7.7 is in

their convergence rates. The simple linear model learns the easy examples and most of the hard ones faster

than the logistic model. We attribute this phenomenon solely to the change in the classifier's functional

basis. The linear model learns at a rate that is approximately linearly proportional to the training sample size

(section 5.5.1). The logistic model learns at a rate that is exponentially proportional to the training sample size

as its parameters grow large because large parameter values drive the logistic non-linearities towards their

limiting step functional form. The proof of this assertion follows directly from section D.3. I, which proves

that gradient-based learning via the original logistic sigmoidal form of CFM becomes unreasonably slow

as the CFM sigmoid approaches its limiting step functional form. Faster convergence notwithstanding, the
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Figure 7.18: The 15-parameter linear classifier's output state - as projected ,ntn the rer1,,c, ,'r'iminant
continuum - after attempting to learn all the Iris probabilistically (MSE). The classifier cannot learn 22 of
the examples.

linear and logistic linear classifiers exhibit the same final empirical error rate of 1.3 (+2.5/-I .3)%. Figure 7.16

shows the reduced discriminator output state of the linear classifier after 350 learning epochs. Note that

because the classifier is linear in X its output is on Y = R-1 rather than 10,11 3 . This explains why a

number of the training examples appear outside the unit square in the figure. Despite the substantial change

in functional basis, this linear classifier exhibits the same learning characteristics as its logistic counterpart:

it fails to learn examples 83 and 133.

The same is not true for the simple linear classifier that employs probabilistic learning. Because the

linear discriminant functions are a decidedly improper parametric model of the Iris feature vector, they have

insufficient functional complexity to approximate the a posteriori class probabilities of X. Figure 7.17

shows the probabilistic learning curve for the MSE objective function. The classifier cannot learn 14.7

(+6.2/-5.8)% (22) of the 150 examples, which are clearly visible in figure 7.18. Note that most of these

un-learnable training examples fall inside the 0.36 MSE contour. All of these examples are learned with the

differential strategy.
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Figure 7.19: The empirical error rates (training sample with all 150 examples) for the 15-parameter modified
RBF classifier as it learns differentially (CFM). The classifier's empirical error rate after 350 learning epochs
is 2.0 (+2.9/-2.0)%.

Figure 7.19 shows the learning curve for a modified radial basis function (RBF) classifier (see appendix K)

that employs differential learning. The classifier has no hidden layer nodes, only three output nodes

corresponding to the three discriminant functions. For both differentially and probabilistically-generated

variants, the mean vectors of the model {/ t, ,P2 ,, } are initialized to the empirical class-conditional means

of the training sample, and the single variance parameters {jO ,2 , a.} of (K.3) are set to the average

eigenvalue of their corresponding empirical class-conditional covariance matrix. This initialization procedure

is not necessary; it simply reduces the learning time for all models. 9 The differentially-generated model

9The critical reader will note that the initialization procedure is fundamentally probabilistic. In this sense the reader might think
it logically inconsistent for us to follow such an initialization with differential learning, claiming some advantage over probabilistic
learning. Realizing this potential inconsistency, we ran a series of simulations without such initialization. The results for this and other
tasks were fundamentally identical to the results with initialization, the only difference being that the initialized models learned much
more quickly. In our view. one of the principal weaknesses of radial basis functions is their very local nature, which leads to learning
times that increase exponentially as the RBF covariance matrix eigenvalues decrease (i.e.. as the RBF nodes become increasingly local).
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Figure 7.20: The 1 5-parameter differential modified RBF classifier's output state -- as projected onto the
reduced discriminant continuum -- after attempting to learn all the Iris with low confidence. The classifier
cannot learn examples 70, 83, and 133 (see figure 7.2).
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Figure 7.21: The empirical error rates (training sample with all 150 examples) for the 15-parameter modified
RBF classifier as it learns probabilistically (MSE)). The classifier's empirical error rate after 350 learning
epochs is 4.7 (+4.0/-3.4)%.

* learns all the examples except 70, 83, and 133 after 350 epochs (confidence is reduced from 0.6 at epoch zero

to 0.14 beyond epoch 200). The classifier's final reduced discriminator output state is shown in figure 7.20.

Again, this differentially-generated classifier is not substantially worse than its logistic linear counterpart,

despite the substantial change in the discriminator's functional basis. These results indicate that differential

* learning is relatively insensitive to the representational scheme of the hypothesis class (i.e., its functional

basis). By the proofs of chapter 3, differential learning will produce the lowest MSDE possible, given the

representational scheme. These experiments bear that out.

Figures 7.21 - 7.24 illustrate the learning curves and final reduced discriminator output state for the MSE

* and Kullback-Leibler probabilistic RBF variants. "-h-, MSE-generated classifier exhibits a 4.7 (+4.0/-3.4)%

By placing the radial basis functions in quasi-optimal locations on feature space at the outset, this probabilistic initialization procedure
reduces learning times substantially.

I0I ll l IIIII~lIl I
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Figure 7.22: The 15-parameter modified RBF classifier's output state -- as projected onto the reduced
discriminant continuum - after attempting to learn all the Iris probabilistically (MSE). The classifier cannot
learn 7 of the examples.

empirical error rate after 350 learning epochs, whereas the Kullback-Leibler-generated classifier exhibits

a 6.7 (+4.6/-4.0)% rate after the same cumber of epochs. Again we see the non-monotonic nature of

probabilistic learning when the hypothesis class is not a proper parametric model of the feature vector.

Most of t..e misclassified training examples in figure 7.22 fall inside the 0.36 MSE contour, while most

of those in figure 7.24 fall inside the 0.824 CE contour. It is ironic that there are regions on the correct

side of reduced discriminant space in which MSE/CE is the same or higher. Clearly, probabilistic learning

minimizes the functional error between the discriminator and the training sample without regard to whether

an example is learned or un-learned. As a result, the easy examples (i.e., the majority of the training sample)

dominate the error minimization, and the hard examples are never learned. When the hypothesis Mlass is a

distinctly improper parametric model, as it is in figures 7.19, 7.21, and 7.24, the phenomenon is particularly

pronounced; decreasing the functional error paradoxically increases the discriminant error.
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* Figure 7.23: The empirical error rates (training sample with all 150 examples) for the 15-parameter modified
RBF classifier as it learns probabilistically (Kullback-Leibler - CE',). The classifier's empirical error rate
after 350 learning epochs is 6.7 (+4.61-4.0)%.

* 7.8 Minimizing the Classifier's Complexity

One way to learn all the Iris examples probabilistically is to increase the functional complexity of the

hypothesis class enough so that minimizing the resulting classifier's functional error is sure to minimize the

empirical error rate for the training sample. If we do this we are likely to cut ourselves on Occam's razor.
Specifically, by increasing the classifier's complexity we reduce its discriminant bias at the cost of increasing

its discriminant variance: the net effect for small training sample sizes is an increase in the classifier's

mean-squared discriminant error (MSDE) - a phenomenon we shall see repeatedly in the chapters that

follow. The functional bias-variance tradeoff is well-known both in detection and estimation theory, and the

connectionist literature (e.g., [411). We remind the reader that we are discussing a very different tradeoff

between discriminant bias and variance (see chapter 3).

0
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Figure 7.24: The 15-parameter modified RBF classifier's output state -- as projected onto the reduced
discriminant continuum - after attempting to learn all the Iris probabilistically (Kullback-Leibler - CE).
The classifier cannot learn 10 of the examples.

Our Iris experiments illustrate the importance of corollary 3.1:

"* because differential learning is asymptotically efficient, it guarantees the lowest discriminant bias

possible for a particular choice of hypothesis class.

"* because differential learning requires the hypothesis class with the least functional complexity necessary

to achieve a specific level of discriminant bias for asymptotically large training samples, it guarantees

the least discriminant variance and, as a result, the lowest MSDE possible for small training sample

sizes.
10

We shall see in the following chapters that the minimum complexity requirement of differential learning

is the key to its producing classifiers with consistently lower empirical error rates than those produced by

probabilistic learning. We find that many interesting pattern recognition tasks can be learned with simple

classifiers, which generalize well to unseen test examples by virtue of their simplicity.

"In'be one exception to this guarantee is when the hypothesis class is a minimum-complexity proper parametric model of X, as
described in section 3.6 and appendix F.
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The 15-parameter logistic linear classifier employing differential learning exhibits a 2.7(+2.2/-2.6)%

error rate (4 errors) when it learns and is tested in 150 leave-one-out [841 trials."I This result suggests that the

logistic linear classifier's MSDE is relatively low and that the model generalizes well. The best independent

leave-one-out test result for an), classifier is a statistically equivalent 2.0(+2.9/-2.0)% error rate (3 errors),

reported in [ 139, ch. 6]. The 15-parameter logistic linear classifier employing probabilistic learning via MSE

exhibits a 6.0(+4.4/-3.9)% error rate (9 errors) when it learns and is tested in 150 leave-one-out trials. The

15-parameter logistic linear classifier employing probabilistic learning via CE exhibits a 8.0(+5.0/-4.4)%

error rate (12 errors) when it learns and is tested in 150 leave-one-out trials.

7.9 Summary

The Iris classification task is an interesting case study because the task is real, not fabricated, the data have

been studied extensively by a number of authors, and the classes are not quite linearly separable. As a

result, the task is neither trivial nor hard, and it provides a good comparison of differential and probabilistic

learning. By visualizing the Iris data in two dimensions, we find that a linear classifier should be able to learn

all but two of the 150 examples. The two linear classifiers (ones with linear and logistic functional bases)

employing differential learning do indeed learn all but two of the examples. A (non-linear) modified RBF

classifier learns all but three of the examples. Comparable probabilistically-generated classifiers cannot learn

as many of the examples, illustrating both the inefficiency of probabilistic learning and its sensitivity to the

representational scheme.

Because the Iris data constitute a 3-class pattern recognition task with a 4-element feature vector, and

because the classes are nearly separable, the learning task is relatively easy. In the chapters that follow, we

explore learning tasks that are somewhat harder. Throughout these experiments, we find the results of this

chapter repeated: differential learning is efficient, producing the classifier that generalizes best for a given

choice of hypothesis class.

"The 95% confidence bounds we give are based on the assumption that each leave-one-out trial is a Bernoulli trial [62).
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Chapter 8

Optical Character Recognition with
* Differential Learning

Outline

We use a linear classifier employing differential learning to recognize handwritten digits of the AT&T "little"

(DB1I) database.' The classifier has 650 total parameters for this optical character recognition (OCR) task.

After learning the benchmark training sample, the classifier exhibits a 1.3% error rate on the benchmark

test sample. Its probabilistically-generated counterparts exhibit twice this error rate, as does the the best

independently-developed linear classifier. A differentially-generated simple Gaussian radial basis function

(RBF) classifier achieves a 2.0% error rate on the benchmark test sample - not substantially worse than

the linear model, despite the substantial "representational" change (i.e., the change in functional basis). An

identical probabilistically-generated RBF exhibits a 10.3% error rate on the benchmark test sample. We use

noisy versions of the DB I database to illustrate the special (and readily discernible) conditions under which

differential learning might not produce the best-generalizing classifier for small training sample sizes.

8.1 Introduction

The AT&T DB I database contains 1200 handwritten digits: ten examples of each digit, obtained from each

of twelve different subjects [47]. Figure 8. 1 illustrates 40 examples from the database. Each example is

a 256-pixel ( 16 x 16) binary image (i.e., pixels are either black = -1 or white = +1). The examples are

well-defined to the human eye and have uniform scale and orientation. Since its introduction, the database

has become a benchmark standard for evaluating learning procedures and neural network architectures in

the optical character recognition (OCR) domain. We in turn use the database to illustrate the theoretical

arguments of part I.

'We thank Dr. Isabelle Guyon of AT&T for providing us with the DB I database. Readers interested in previous research on this
database should review 146. 41.47. 16).

219
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Figure 8. I: Forty digits randomly chosen from the AT&T DB I database.

We show that compressing the 256-pixel ( 16 x 16) binary images to 64-pixel (8 x 8) 5-state images

allows us to employ less complex classifiers, which exhibit lower test sample error rates than those designed

for the un-compressed images. Specifically, simple linear and non-linear classifiers with 650 parameters2

(65/digit) - one fourth the number of parameters necessary for the 256-pixel images - classify the

compressed images with test sample error rates on the order of 2%. We compare these classifiers, which learn

differentially, with counterparts that learn probabilistically. The latter exhibit error rates that are between 1.7

and 3.5 times the differentially-generated models' rates, depending on the classifier's functional basis. We

conclude by extending the experiments of [41] in which the original 256-pixel binary images are corrupted

by noise that takes the form of randomly inverted pixel states. We derive simple signal-to-noise ratio (SNR)

expressions for the noisy images. We then use compressed versions of the noisy images to illustrate the

special (and readily discernible) circumstances under which differential learning might not generate the

relatively efficient classifier (definition 3.15 - i.e., the one with the lowest MSDE allowed by the choice of 0

hypothesis class) for small training sample sizes.

81.1 A Word Regarding Training and Test Samples

Throughout this chapter we refer to a "benchmark split" of the DB I database. This term refers to the 0

partitioning of the database into a training sample and test sample. Both samples contain 600 examples. The

benchmark training sample comprises the first five examples of each digit, obtained from each of the twelve

subjects. The benchmark test sample comprises the last five examples of each digit, obtained from each of

2 There are C = 10 discriminant functions, and the augmented feature vector has N + I = 65 elements. Therefore the classifier

has O • 65 = 650 total parameters.

S
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the twelve subjects. This benchmark split has been used in a number of previous papers on the database; we

use it in order to compare our results with previously published ones. We also run multiple trials in which

the training examples are selected randomly from the entire 1200-example database with probability 4 (see

sections 8.2.1 and 8.2.2). Since these random splits of the database do not guarantee a balanced number of

examples of each digit for each subject, the empirical test sample error rates of classifiers generated/tested

with them are typically higher than the rate for the benchmark split.

8.2 Test and Evaluation Protocols

Classifier comparisons are strictly controlled: Throughoitl this entire text, when we compare clas-

sifiers that employ differential learning with those that employ probabilistic learning, all experimental

conditions in a given trial are identical except for the objective function used to drive the learning

procedure. Learning rates, momentum terms,3 weight decay and or weight smoothing constants (see

appendix M), training and test samples, the hypothesis class and its associated parameter space, etc.

- all of these factors are identical: only the objective function is different. Furthermore, learning is

completely automated after tasklclassifier setup. so there is no human intervention during the actual learning

process. These controls aim at an un-biased comparison of differential and probabilistic learning strategies.

8.2.1 Estimating Error Rates

All estimated error rates quoted in this text are based on classification results for test samples that have no

examples in common with the training sample used for learning.

Definition 8.1 Estimated error rate: Given a single test sample of size 11, the estimated error rate -

which we denote by P, (. , qi) -for the classifier with discriminator 9 (X 10) is simply the ratio of test

sample errors -(rl) to the total number of test examples Y1:

P. (• A0, E-(i1____) - number of test sampleerrors (8.1)
11 test sample size

Remark: We sometimes refer to 0, (C i , i) as the classifier's empirical test sample error rate. It is

valid to view P, (C 10, I6) as an asymptotically unbiased, maximum-likelihood estimator of the classifier's

3Learning is a search over parameter space for the parameterization that maximizes the objective function, given the differentiable
supervised classifier and the training sample. We employ a variant of the simple gradient-based search algorithm with "momentum"
typically associated with the backpropagation algorithm (e.g.. [ 119, 1201).
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true error rate P, ( t o ). Indeed, P 0 ( q .7,) itself is a binomnially-distnbuted random variable with

mean p = P, (C 10). We assume that p _5 P, (C 10, i,) in order to compute 95% confidence bounds on

S(C [0, ,I) in the manner described by Highleyman [621.

We judge the error rates of two different classifier/learning strategy combinations, estimated from a

single learning/test trial (involving a single training/test sample), to be significantly different if their 95%

confidence intervals do not overlap. When the classifier/learning strategies are compared over a series of

independent trials (each involving an independent, randomly-selected training/test sample), we consider them

to be significantly different if one classifier's empirical test sample error rate is consistently lower than the

other classifier's.
It is important to clarify the nature of our, "independent, randomly-selected training/test samples." In this

chapter we have 1200 total digit examples. Each randomly-selected training sample contains approximately

600 examples; the associated test sample contains all the examples in the original set of 1200 that are not in

the training sample. Different training/test samples are independent to the extent that they contain different

randomly-selected sub-sets of the original 1200-example database; the selection procedures are independent

across trials. We denote the size of the kth training sample by Ilk and the size of the associated kth test

sample by 'lk. Thus, our 25 independent learning/test trials in this chapter (and similar trials in chapter 9)

constitute 25 repetitions of a 2-fold cross validation procedure (e.g., 1139, 911) by which we estimate the

classifier's true error rate P, (C 0).

Cross validation: In general, 2 -fold cross validation is done by dividing all the labeled examples ofthefeature

vector into a training sample and a test sample of approxintately equal size (i.e., nk s ilk - a 50/50 partition-

ing, or "split", of the entire data sample). We use this protocol throughout this text unless otherwise stated.

Repeated 2-fold cross validation generates an error rate estimator (and, as a result, a discriminant bias

estimator) with relatively low bias and variance. 4 The procedure also allows us to estimate the classifier's

discriminant variance and MSDE.

8.2.2 Estimating a Classifier's MSDE

Given K independent, randomly-selected 2-fold cross validation training samples with sizes {In, ... ,nK}

and associated test samples with sizes {fil ... , qi}, we define the following estimators of the expectations

(defined in section 3.2) for the classifier's error rate, discriminant bias, discriminant variance, and mean-

squared discriminant error (MSDE). The notation -(11)k denotes the number of misclassifications made on

the kth test sample of size ilk.

4 The reader will find a very readable overview of the extensive literature relating to classifier error rate estimation in [ 139. sec. 2.5].
Those seeking a more detailed treatment of this material will find it. along with extensive references to the literature, in [91, ch. 101.

0
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Definition 8.2 Average est~mated error rate: Given the classifier repeatedly generated from the

hypothesis class G(0) by the learning strategy A over K 2-fold cross validation trials, its average

estimated error rate is simply the average of the estimated error rate in (8.1) across all trials:

Pe(gje, {,1,1. IlK) K Pe (111) = K E i (8.2)
k=l k=l

Remark: We sometimes refer to Pe (9 1 0, fill... , ,PI}) as the classifier's average (empirical) test sample

error rate. Note that (8.2) is an estimate based on the average of K 2-fold cross validation trials, whereas

(8. 1) is based on a single 2-fold cross validation trial.

Definition 8.3 Estimated discriminant bias: Given the classifier repeatedly generated front the

hypothesis class G( e) hiv the learning strategy A over K 2-fold cross validation trials, its estimated

discriminant bias is its average estimated error rate minms the estimated Bayes error rate P. (Ysrn~s):

DBias[C {,, ... , n1K} , G(e), A] ( P 1( 0 I, { YI, .... ,1K}) - P, (-srnc.,) (8.3)

Remark: In general we do not know the Bayes error rate for X. The most conservative estimate is that

Pe (-,,1 ..) = 0 (i.e., the Bayes-optimal classifier can classify examples of X without error). Note from

the definitions of section 3.2 that a classifier's discriminant bias and MSDE are maximized (as a function

of P, (Y&,-.,)) when P, (Y,,') = 0. Thus, if we assume P, (-•rex) = 0, we are, if anything,

over-estimating the classifier's discriminant bias and MSDE. In the casc of the DB I digit recognition task,

humans typically recognize all 1200 examples without error, so we assume that the Bayes error rate for this

task is indeed zero.

Definition 8.4 Estimated discriminant variance: Given the classifier repeatedly generated from the

hypothesis class G(e) by the learning strategy A over K 2-fold cross validation trials, its estimated

discriminant variance is the "sample variance" of its estimated error rate:

DVar [ {i . PIK),,G(), A] E (Pe ( 1•9,'Il) - P, (9C , 1 , ...f 'IK (8.4)

Definition 8.5 Estimated mean-squared discriminant error (MSDE): Given the classifier repeatedly

generatedfrom the hypothesis class G(e) by the learning strategy A over K 2-fold cross validation trials.
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its estimated MSDE is the sum of its estimated discriminant bias squared and its estimated discriminant 9
variance:

N&D"E [9 1 il 1K, ,ne}, G(9,A]) 'F

(Diias [9 n1 fill, . . ,11K G(e), A].)2 + ID-ar [QI {,,, ..... , ,},G(e), A] (8.5)

We use these estimators to assess and compare different classifier/learning strategy combinations across a

series of 2-fold cross validation trials. We often use the term "empirical" when referring to our estimates 0
(e.g., the term "empirical MSDE" refers to the estimated MSDE defined above).

8.2.3 Graphical Statistical Summaries

We display single and multi-trial statistics based on the estimators described above using two simple graphics.

Both graphics illustrate the set of empirical error rates obtained over a series of 2-fold cross validation trials,

and one can be used to characterize the result of a single trial.

Thc first graphic is the box plot [I A1, ch. 2], which is described in detail in appendix C. In brief (see,

for example, figure 8.3 on page 226), the box of each plot has vertical extrema that match the first and third 0
quartiles of the ranked empirical error rates; the horizontal line dividing the box delineates the median error

rate; the inner and (if shown) outer "T"-shaped "fences" of each plot depict the nominal lower bound of

the first quartile and nominal upper bound of the fourth quartile, given the ranked empirical error rates. Any

extreme first/fourth quartile values falling beyond the outer fence(s) are plotted as dots. The box plot therefore

displays the results of aU trials, emphasizing the median empirical error rate and a quartile partitioning of the

results.
The second graphic we use is the familiar whisker plot. In the case of a single trial (see, for example,

figure 8.8 on page 231), the dot of the plot delineates the estimated error rate of (8.1), and the upper and

lower fences represent the upper and lower bounds of a 95% confidence interval about this estimate. The 0
computation of this confidence interval is described above in section 8.2. 1. In the case of multiple trials (see,

for example, figure 8.3 on page 226), the dot of the plot delineates the average estimated error rate of (8.2),

and the fences represent one upper and one lower standard deviation (derived from (8.4) ) about the average

estimated error rate. 0
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Figure 8.2: Parameters or weights of the logistic linear classifier after learning the DB I database's benchmark
training sample differentially. Dark weights are negative and detect dark regions common to training
examples of the digit with which they are associated; light weights are positive and detect dark regions
common to training examples of other digits.

8.3 Compressing the Data to Improve Generalization

Figure 8.2 illustrates the parameters (or weights) of a linear classifier with 10 logistic linear discriminant

functions of the form described in section 7.2.2. The classifier has 2570 total parameters (257/digit)5 and it

learns the benchmark training sample differentially. When tested on the benchmark test sample, it exhibits

a 2.7 (+1.4/-i.3)% empirical error rate.6 Each weight display in figure 8.2 corresponds to the discriminant

function for the digit beneath the display. Dark pixels in the display represent negative weights, and light

* pixels represent positive weights. The far-left column of each display contains only one vertically-centered

pixel. This pixel represents the "bias" parameter corresponding to the unit-value element prepended to X

in order to form the augmented feature vector of (7.2). The gray shade of the far-left pixel column represents

the value zero (for reference). A dark (negative) weight corresponds to a region that is typically dark (-I)

* in the training examples of the digit with which the weight's discriminant function is associated. A light

(positive) weight corresponds to a region that is typically dark in the training examples of any digit with

which the weight's discriminant function is not associated. For ex-:nple, a diagonally-skewed dark image of

the digit zero is clearly visible in the weight display for the digit zero discriminant function. Likewise, a dark

'There are C = 10 discriminant functions, and the augmented feature vector has N + I = 257 elements. Therefore the classifier
has 10 - 257 = 2570 total parameters.

iUnless otherwise noted, error rates are given with 95% confidence intervals. These intervals are computed on the assumption that
the empirical test sample error rate is binomially distributed 1621.
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Figure 8.3: Left: Test sample classification summaries for the 2570-parameter logistic linear classifier
employing differential learning (Aa ) and two forms of probabilistic learning (Ap). The summaries are
based on 25 independent trials. In each trial, training examples are drawn randomly from the set of
1200 images with probability 2 ; those not chosen for training form the test sample. The box plots are
a non-parametric depiction of the empirical test sample error rate's distribution over the 25 trials; the
whisker plots depict the average empirical test sample error rate plus and minus one standard deviation,
thereby characterizing each classifier's MSDE. Right: The difference between the probabilistically-generated
models' empirical error rates and the differentially-generated model's rate on a trial-by-trial basis. These
box plots show that differential learning doesn't always produce the classifier with the lowest empirical error
rate; this is because the hypothesis class has excessive functional complexity for the task.

image of the digit one is visible at the left edge of the weight display for the digit one discriminant function;

however, a light image of the digit three is also clearly visible in the center of this weight display. To a first

approximation, the discriminant function for the digit one therefore detects "one and not 3" images. Similar

characteristics can be found in all the weight displays, although the representations tend to be quite abstract

to the human eye.

When generated and tested with 25 different random splits of the DB I database, the 2570-parameter

differentially-generated logistic linear classifier exhibits a median empirical test sample error rate of 3.7%.
Probabilistically-generated variants (both MSE and Kullback-Leibler (CE) objective functions) exhibit a

slightly higher median rate of 4.2%. Figure 8.3 (left) displays the 25 trial empirical test sample error rate

statistics for the three objective functions. The results are shown in box plot [131, ch. 2] (see appendix C)

and whisker plot statistical summaries. The right-hand side of figure 8.3 compares the two probabilistic

learning strategies with the differential strategy on a trial-by-trial basis. Thnse box plots summarize the

difference between the the MSE/CE-generated classifiers' and the CFM-generated classifier's empirical
test sample error rates for each of !he 25 trials. Positive values indicate that the differentially-generated

classifier exhibits a lower empirical test sample error rate than the probabilistically-generated one for the
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Figure 8.4: The distribution of parameter values in the 257-parameter logistic linear discriminant function
representing the digit -3" (cf. figure 8.2). The parametric entropy of these weights is 2.39, corresponding to
the relatively low variance in the distribution. The parametric entropy of all weights in the 2570-parameter
model is 2.30.

trial; negative values indicate that the differentially-generated classifier exhibits a higher empirical test

sample error rate than the probabilistically-generated one for the trial. From figure 8.3 (left) we see that

the differentially-generated model's discriminant bias, indicated by its average empirical test sample error

rate, is slightly lower than the probabilistically-generated models'. This is also evident in the trial-by-trial

statistics on the right side of the figure: in 3/4 of the trials, the differential model exhibits a lower error rate

than its MSE-generated counterpart; in 2/3 of the trials, the differential model exhibits a lower error rate than

its CE-generated counterpart. The discriminant variance of the classifiers produced by differential learning

and both probabilistic learning procedures is indicated by the vertical span of their respective whisker plots.

Figure 8.3 (left) indicates that the differentially-generated model's discriminant variance is approximately

the same as the probabilistically-generated models'.

Figure 8.3 illustrates that the differentially-generated model's empirical MSDE (as indicated by the
whisker plot) is not significantly lower than the probabilistically-generated models'. This is because the

hypothesis class (i.e., the 2570-parameter logistic linear discriminator) has excess functional complexity for

the task. Figure 8.2 helps to explain why this is so. The weights of the figure are blurred looking because

the classifier employs weight smoothing (described in section M.2) during learning. This is done in order to

minimize (he parametric entropy' (definition M. 1) of the classifier's weight vector, an empirical measure that

we use to gauge the weight vector's information content. Weight smoothing therefore reduces the classifier's

discriminant variance, since only the information essential to learning is retained. Figuie 8.4 shows a

histogram of the weights in the discriminant function for the digit "3" (again, the weights themselves are

shown in figure 8.2). Because the classifier learns all of the 600 training examples with a large amount
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Figure 8.5: The same digits shown in figure 8.1, linearly compressed from 256- to 64-pixel images.U.ULIL

0 1 2 3 4
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Figure 8.6: Parameters or weights of the 650-parameter logistic linear classifier after learning the DBI
ddtabase's benchmark training sample differentially.
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Figure 8.7: The distribution of parameter values in the 65-parameter logistic linear discriminant function
representing the digit "3" (cf. figure 8.6). The parametric entropy of these weights is 3.46; the parametric
entropy of all weights in the 650-parameter model is 3.18, compared with 2.30 for the 2570-parameter model.
The increased variance in these weights compared to those in figures 8.2 and 8.4 reflects the classifier's lower
functional complexity: each weight now contains more information for the discrimination task.

of weight smoothing 7 (K = 0.128), the "3" discriminant function's weight vector has relatively low

parametric entropy (2.39). This low entropy reflects the low variance in the histogram of the weights. The

parametric entropy of all the classifier's weights is 2.3, a relatively small value suggesting that 256-pixel

images can be compressed without an appreciable loss of information. That is, we would expect that

compressing the images would increase the parametric entropy of the resulting lower-complexity classifier,

and that this increase would not be so large as to cause an increase in the classifier's error rate. Our

expectation is based on the notion that the classifier encodes all the information required to classify all the

training examples correctly; this information can be measured in terms of the total number of bits necessary

to describe the classifier's discriminator. As the number of parameters in the discriminator is decreased,

the same amount of information must be encoded with fewer parameters, so the parametric entropy - our

measure of the average amount of information in a single parameter of the discriminator - increases. We

remind the reader that parametric entropy is an ad-hoc measure of the information content in a retinotopic

parameter vector (see section M. 1. 1). Given this measure, we hypothesize - but have not proven - that

there is an upper bound on the classifier's information capacity, which corresponds to an upper bound on

the parametric entropy of its weight vector. Beyond this upper bound, the classifier fails to encode all of the

information in the training sample essential to robust discrimination. Below this upper bound, the classifier

has more than sufficient capacity to encode all the information necessary for robust discrimination.

Our belief that the classifier complexity can be reduced without an appreciable information loss is

validated by figure 8.5, which shows the images of figure 8.1 after they are compressed using the procedure

7The weight smoothing parameter K has a value between zero and one (see appendix M). A value of zero results in no smoothing: a
value of one forces all weights to have the same value. From a qualitative perspective, any value of K > 0. 1 is large.
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described in section M.3. The images are still quite legible to the human eye, despite their having one fourth

the number of pixels. Figure 8.6 shows the weights of a 650-parameter logistic linear classifier after it learns

the compressed benchmark training sample differentially. Again, the classifier learns with a weight smoothing

coefficient of K = 0.128. Figure 8.7 shows that the "3" discriminant function's parametric entropy has

increased from 2.39 (for the 2570-parameter classifier) to 3.45, while the entropy of all discriminant functions

has increased from 2.30 to 3.18. That is, each weight in the 650-parameter model encodes more information

(as measured by the classifier's parametric entropy) than each weight in the 2570-parameter model. At the

same time, the lower-complexity classifier's empirical benchmark test sample error rate has dropped from

2.7 (+1.4/-1.3)% to 1.3 (+1.1/-0.9)% - a 52% reduction, which indicates the improved generalization of the

lower-complexity classifier.

Figure 8.8 compares the empirical benchmark test sample error rates for the 650-parameter logistic linear

classifier employing differential learning with those of two probabilistically-generated counterparts. The

differentially-generated model's 1.3 (+1.1/-0.9)% error rate is approximately one half the MSE-generated

model's rate of 2.7 (+1.4/-1.3)%, and it is approximately one third the CE-generated model's rate of 4.0

(+l.7/-1.6)%. Also shown are the benchmark test sample error rates of the best independently-developed

linear classifier and the best independently-developed non-linear classifier. Both of these independent

results are described in [161. These classifiers learn a subset of the un-compressed benchmark training

sample, which has had unrepresentative examples removed by a culling procedure described in [161. The 0
independently-developed linear classifier shown learns the culled training sample using a discriminative

learning procedure also described in 1161; it exhibits an empirical b-nchmark test sample error rate of 3.2

(+1.6/-I.4)%. The independently-developed non-linear classifier shown learns the culled training sample

after all its examples have been heavily filtered using a Gaussian smoothing kernel; it exhibits an error rate

of 0.3 (+0.6/-0.3)%.

8.4 Recognition Results

Figure 8.8 shows that the differentially-generated logistic linear classifier makes fewer recognition errors

on the benchmark test sample than all but the best independently-developed non-linear classifier. Based

on this single trial, the differentially-generated linear model is not significantly better than the other linear

models, nor is it significantly worse than the non-linear model. Since the independent results are based on a

single trial using the benchmark test sample, the only multi-trial comparisons we can make are with our own

probabilistically-generated models.8

IGeman et at have run multiple independent learning/testing trials using random data splits (41]. but the errot rates of their
prnbabilistically-generated classifiers are considerably higher than those of our probabilistic controls. We therefore restrict our
multi-trial comparisons to our own experiments in order to give probabilistic learning a fair evaluation.
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Figure 8.8: Test sample empirical error rates with 95% confidence intervals for the DB I database's
benchmark split of training/testing examples. The differentially-generated logistic linear classifier (A& ) is
shown with two probabilistically-generated controls (Ap), the best independent linear result 16], and the
best independent non-linear result 1 161.
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Figure 8.9: Left: Test sample classification summaries for the 650-parameter logistic linear classifier
employing differential learning (A& ) and two forms of probabilistic learning (Ap). The summaries are
based on 25 independent trials in which the DBI database is randomly partitioned into training and test
samples, each containing approximately 600 examples. The box plots are a non-parametric depiction of
the empirical test sample error rate's distribution over the 25 trials; the whisker plots depict the average
empirical test sample error rate plus and minus one standard deviation, thereby characterizing each classifier's
MSDE. Right: The difference between the probabilistically-generated models' empirical error rate and the
differentially-generated model's rate on a trial-by-trial basis. An increase of 2% represents a doubling of
the differentially-generated classifier's median empirical error rate. These box plots show that differential
learning always produces the classifier with the lowest empirical error rate. Moreover, the lower-complexity
differentially-generated logistic linear classifier generalizes better than all of the higher-complexity classifiers
in figure 8.3.
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Estimated MSDE (25 trials)

Classifier Learning Strategy

A, (CFM) AP(MSE) AP (CE)

2570-Parameter 1.6 x 10-- 1.9 x 10-' 1.9 x 10-1

650-Parameter 4.7 x 10-4 1.2 x 10-' 1.8 x 10--

Table 8. 1: Estimated MSDE for the high and low-complexity logistic linear classifiers employing differential
learning (Aa) via the CFM objective function and probabilistic learning (Ap) via the MSE and CE objective
functions. Estimates are based on 25 independent learning/testing trials. Reducing the classifier's complexity
by compressing the digit images has the beneficial effect of reducing the classifier's estimated MSDE. The
reduction is most pronounced in the differentially-generated model, as predicted by theory.

8.4.1 Experiments with the Logistic Linear Hypothesis Class

Figure 8.9 compares the 650-parameter logistic linear classifier employing differential learning with

controls that employ probabilistic learning (MSE and CE objective functions). These comparisons are

for the same 25 random splits of the DB 1 database used for the 2570-parameter classifier tests shown in

figure 8.3. All the low-complexity models exhibit lower empirical MSDE than their higher-complexity

counterparts, as indicated by the lower average error rates and slightly reduced whisker plot spans of

figure 8.9 (left) versus figure 8.3 (left). Table 8.1 summarizes the estimated MSDE for the high and

low complexity classifiers, given the three learning strategies. The differentially-generated model exhibits

the largest reduction in MSDE: its average empirical test sample error rate drops from 3.9% to 2.1%,

while the standard deviation of this statistic drops from 0.71% to 0.57%. Assuming a Bayes error rate

of zero for the DB I database, the 2570-parameter differentially-generated model's empirical MSDE is, by

(3.9), 1.6 x 10-'; the 650-parameter differentially-generated model's empirical MSDE is 4.7 x 10-4

approximately one fourth that of the higher-complexity model. Thus, reducing the classifier's complexity

by compressing the image feature vector by a factor of 4 : I reduce$ the differentially-generated model's

MSDE by approximately the same ratio. For probabilistic learning via MSE, the higher-complexity model's

MSDE is 1.9 x 10-3, and the lower-complexity model's is 1.2 x 10-1. For probabilistic learning via the

Kullback-Leibler information distance (CE), the higher-complexity model's MSDE is 1.9 x 10-1, and the •

lower-complexity model's is virtually unchanged at 1.8 x 10-3 . Figure 8.9 (right) also shows that the

reduced-complexity differentially-generated classifier consistently exhibits a lower empirical test sample

error rate than its probabilistic counterparts. The MSE-generated classifier's error rate is typically 1.3%

greater than (or 1.65 times) the CFM-generated classifier's. The CE-generated classifier's error rate is 0
typically 2.0% greater than (or two times) the CFM-generated classifier's. Thus, reducing the classifier's
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Figure 8.10: The empirical error rates (training sample in gray and test sample in black) for the 650-parameter
logistic linear classifier as it learns the benchmark training sample differentially. The classifier's empirical
test sample error rate is 1.3 (+-1.1-0.9)% after 157 learning epochs.

complexity reduces the MSDE of all the classifiers, but the reduction realized by the differentially-generated

model is significantly greater.

Comparing Learning Strategies for the Benchmark Training/Test Sample

In simple terms, the reduced-complexity differentially-generated model realizes the biggest reduction in

MSDE because (as proven in chapter 3) differential learning I) is asymptotically efficient, regardless of the

choice of hypothesis class, and 2) it requires the minimum-complexity hypothesis class necessary for Bayesian

discrimination. Figures 8. 10i- 8.15 demonstrate these characteristics for the logistic linear classifier learning

the benchmark training sample. Figure 8.10 shows both the training sample (gray) and test sample (black)
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Figure 8.11: The 650-parameter logistic linear classifier's output state - as projected onto reduced
discriminator output space - after learning the 600 benchmark training examples differentially. This output
state corresponds to the parameters shown in figure 8.6. Note how most of the test examples (black triangles)
and all of the training examples (gray dots underneath the test examples) are aligned with the contours of
constant CFM on reduced discriminator output space. These constant CFM contours are parallel to the
reduced discriminant boundary (definition 5.5) - a necessary condition for efficient learning.
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Figure 8.12: The empirical error rates (training sample in gray and test sample in black) for the 650-parameter
logistic linear classifier as it learns the benchmark training sample probabilistically (MSE objective function).
The classifier's empirical test sample error rate is 2.7 (+1.4/-I.3)% after 159 learning epochs.

0

empirical error rates as differential learning progresses through approximately 160 learning epochs. The

objective function's value is plotted as a light gray background in the figure. Ninety-five percent confidence

* intervals on the error rates are plotted at periodic intervals. From these one can see that the training sample

error rate is representative of the test sample error rate up to ninety differential learning epochs. Beyond this

point the empirical training sample error rate is significantly lower than the test sample error rate. During

differential learning, V/' is reduced from a value of 0.48 at epoch zero to 0.35 beyond epoch 100. The final

* output state of the logistic linear classifier is shown on reduced discriminator output space (definition 5.2) in

figure 8.11. Test examples are shown as black triangles, and training examples are shown as gray dots. After

approximately 160 epochs, all the training examples lie parallel to the CFM = 0.90 contour, as do most of

0
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Figure 8.13: The 650-parameter logistic linear classifier's output state - as projected onto reduced
discriminator output space - after it attempts to learn the 600 benchmark training examples probabilistically.
Note that the MSE-generated classifier cannot learn all the training examples, given the low-complexity
logistic linear hypothesis class.

the test examples. The remaining test examples - ones that are hard for the classifier to discriminate -

fall close to the reduced discriminant boundary (definition 5.5). Owing to the monotonic nature of the CFM

objective function, these examples are also parallel to the reduced discriminant boundary, and most of them 0
are on the correct side of the boundary.

Figure 8.12 shows the empirical training and test sample error rates for the logistic linear classifier that

learns the benchmark training sample probabilistically via the MSE objective function. Its empirical training

sample error rate remains representative of the test.sample error rate through all 160 epochs, although both

error rates are higher than those for the differentially-generated model. Unfortunately the 650-parameter

classifier that learns probabilistically with a weight smoothing coefficient of K. = .128 has insufficient

functional complexity to learn the training sample as well as its differentially-generated counterpart (cf.

figure 8.13 versus figure 8. 11). As a result, the non-monotonic nature of the MSE objective function "

leads the classifier to learn the majority of easy examples with high confidence (i.e., to minimize the MSE

0
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Figure 8.14: The empirical error rates (training sample in gray and test sample in black) for the 650-parameter
logistic linear classifier as it learns the benchmark training sample probabilistically (CE objective function).
The classifier's empirical test sample error rate is 4.0 (+1.7/-1.6)% after 159 learning epochs.

between its outputs and the easy examples' binary target vectors), while it fails to learn the minority of

hard examples. This phenomenon is clearly depicted in figure 8.13. The MSE-generated classifier's training

and test examples are aligned with constant contours of MSE; the harder the example, the higher the MSE.
However the contours of constant MSE are not parallel to the reduced discriminant boundary (i.e., MSE is
not a monotonic objective function - definition 5. 10). As a result, a larger proportion of hard examples fall
on the incorrect side of the boundary, and the classifier exhibits higher empirical training and test sample

error rates than its differentially-generated counterpart (see figure 8.8, page 231).

The classifier that employs probabilistic learning via the Kullback-Leibler information distance (CE
objective function) exhibits the same inefficient behavior thiat thie ISE-generaicd uhsifiet exhibits.

Figure 8.14 shows that the CE-generated classifier's empirical training sample error rate remains representative
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Figure 8.15: The 650-parameter logistic linear classifier's output state - as projected onto reduced
discriminator output space - after it attempts to learn the 600 benchmark training examples probabilistically.
Note that the Kullback-Leibler (CE) generated classifier cannot learn all the training examples, given the
low-complexity logistic linear hypothesis class.

of the test sample error rate through all 160 epochs, although both error rates are higher than those for the •

differentially-generated model. Again, the 650-parameter classifier that learns probabilistically with a weight

smoothing coefficient of K = .128 has insufficient functional complexity to learn the training sample as

well as its differentially-generated counterpart. As a result, the CE objective function induces the classifier to

learn the easy examples with high confidence while it fails to learn the minority of hard examples. Since the 0
contours of constant CE have even more curvature than those of the MSE objective function (i.e., CE is even

less monotonic than the MSE objective function - cf. figures 8.15 versus 8.13), a proportionally greater

number of hard examples fall on the incorrect side of the reduced discriminant boundary. This is reflected

in the CE-generated classifier's elevated empirical training and test sample error rates (again, see figure 8.8, 5
page 231).
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8.4.2 Experiments with Alternative Hypothesis Classes

The inefficiency of probabilistic learning impacts the classifier's MSDE to a degree that varies with the

choice of hypothesis class. If the hypothesis class is a reasonably good approximation to a proper parametric

model of the feature vector (definition 3.13, page 63), the MSDE of classifiers produced from the hypothesis

class by probabilistic learning might be lower than the MSDE of their differentially-generated counterparts

for small training sample sizes. However, if the hypothesis class is a distinctly improper parametric model

of the feature vector, the MSDE of the probabilistically-generated classifier will be substantially higher than

that of the differentially-generated classifier (recall that chapter 4 illustrates this phenomenon for a simulated

random feature variable).

The Linear Hypothesis Class

Figures 8.16- 8.20 provide a detailed comparison of probabilistic and differential learning when the classifier

is generated from a 650-parameter linear hypothesis class of the form described in section 7.2. 1. Learning

with the linear hypothesis class proceeds faster than it does with the logistic linear hypothesis class for the

reasons outlined in section 5.5.1 (all learning parameters for the linear hypothesis class are identical to those

for the logistic linear hypothesis class). This is evident from the history of the benchmark empirical training

and test sample error rates shown in figure 8.16. As with the logistic linear hypothesis class, the training

sample error rate is significantly lower than the test sample error rate beyond a certain point in the differential

learning trial (40 epochs in this case). The linear classifier's output state after 75 differential learning epochs

is shown in figure 8.17. Many training and test examples fall outside the unit square on reduced discriminator

output space because the linear classifier's outputs are not bounded. That is, Y = ??C rather than (0, I]c.

Nevertheless, we see the same general trends displayed by the logistic linear classifier in figure 8.11: All

of the training examples are learned, since they engender discriminant differentials that are greater than

S= 6 ~e~an f 0.2. Most of the test examples also exhibit relatively large positive discriminant differentials.

The harder test examples with negative or relatively small positive discriminant differentials are parallel to

the reduced discriminant boundary. The differentially-generated linear classifier's benchmark empirical test

sample error rate is 2.3 (+1.4/-1.3)% - not significantly higher than the differentially-generated logistic

linear classifier's rate.
Figure 8.18 shows the benchmark empirical training and test sample error rates of the linear classifier

during probabilistic learning via MSE. The training sample error rate remains representative of the test

sample error rate throughout the learning trial. Indeed, the error rates converge to their final values after

approximately 35 epochs. The final empirical test sample error rate is 5.0 (+1.9/-I.8)% - more than

twice the differentially-generated model's rate. Being an improper parametric model of X and having

insufficient functional complexity to model the empirical a posteriori class probabilities of X accurately, the

probabilistically-generated linear model minimizes the MSE between its output state and the training sample



240 Chapter 8: Optical Character Recognition

-- Training Sample - Tea Sample []0CFM

1.0 1.0

0.1 0.1

S

•0.01. 0.01
<L.

0-00i . 0.001

5 10 15 20 25 30 35 40 45 50 55 W0 65 70

75

Epoch

Figure 8.16: The empirical error rates (training sample in gray and test sample in black) for the 650-parameter
linear classifier as it learns the benchmark training sample differentially. Learning is predictably faster, albeit
somewhat less stable than it is with the logistic linear hypothesis class. The classifier's empirical test sample
error rate is 2.3 (+1.4/-1.2)% after 75 learning epochs. The critical reader should note that the empirical test
sample error rate settles at this value beyond 75 learning epochs.

target vectors as best it can. Figure 8.19 shows the classifier's r learning output state as projected onto

reduied discriminator output space. Note that both trainilag and tesi amples are aligned with the contours of

constant MSE. This is particularly clear for the misclassified examples, which fall on the incorrect side of the

reduced discriminant boundary. All of the training examples and most of the test examples that fall inside the

MSE = 0.36 contour are learned or correctly classified by the differentially-generated model in figure 8.17.

Figure 8.20 shows that the probabilistically-generated linear classifier's error rate is consistently higher than

the differentially-generated model's across the 25 random splits of the DB I database. Indeed, the MSE-

generated model's error rate is typically more than three times the CFM-generated model's. Experiments

0
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Figure 8.17: The 650-parameter linear classifier's output state -- as projected onto reduced discriminator* output space - after learning the 600 benchmark training examples differentially. Since the linear classifier's
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Figure 8.18: The empirical error rates (training sample in gray and test sample in black) for the 650-parameter
linear classifier as it learns the benchmark training sample probabilistically (MSE objective function). The
classifier's empirical test sample error rate is 5.0 (+1.9/-I .8)% after 60 learning epochs. No further learning
occurs beyond 60 epochs.

with the CE objective function are not possible because the linear classifier's outputs are unbounded; this

violates the conditions necessary for learning via the CE objective function (see section 2.3.2).

The Modified Gaussian RBF Hypothesis Class

Figure 8.21 summarizes the results of 25 learning trials, given a 650-parameter modified Gaussian RBF

hypothesis class of the form descrihed in appendix K. Results are summarized for differential learning

via the CFM objective function and probabilistic learning via the MSE and CE objective functions. These

comparisons are for the same 25 random splits of the DB I database used for all the previous multi-trail

experiments. The modified RBF hypothesis class is an improper parametric model of X. In addition, the
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Figure 8.19: The 650-parameter linear classifier's output state - as projected onto the reduced discriminator
output space - after it attempts to learn the 600 benchmark training examples probabilistically (MSE
objective function). Note that the MSE-generated classifier cannot learn all of the training examples, given
the low-complexity linear hypothesis class.

hypothesis class cannot form the same piece-wise linear boundaries on X that the linear hypothesis classes

can.9 As a result, the modified RBF hypothesis class has insufficient functional complexity to match the

linear hypothesis class error rates. This is evident in the 3.8% median error rate of the differentially-generated

classifier, which is approximately twice the differentially-generated linear classifiers' median empirical error

rates. The probabilistically-generated RBF classifiers fare worse in comparison to their linear counterparts;

their median empirical error rates increase to 12% (MSE) and 10% (CE). The probabilistically-generated

RBF classifiers consistently exhibit empirical error rates that are between two and four times the median rate

for the differentially-generated classifier.

8.4.3 Interpretation of Results

09 A formal proof of this assertion would require a number of pages. and would not lend anything of substance to our line of argument.
Therefore. we ask the reader to accept this assertion on faith.
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Figure 8.20: Left: Test sample classification summaries for the 650-parameter linear classifier employing
differential learning (Aa ) and the MSE form of probabilistic learning (Ap). The summaries are based on
25 independent trials in which the DB I database is randomly partitioned into training and test samples, each
containing approximately 600 examples. The box plots are a non-parametric depiction of the empirical test
sample error rate's distribution over the 25 trials; the whisker plots depict the average empirical test sample
error rate plus and minus one standard deviation, thereby characterizing each classifier's MSDE. Right:
The difference between the probabilistically-generated models' empirical error rate and the differentially-
generated model's rate on a trial-by-trial basis. This box plot shows that differential learning always produces
the classifier with the lowest empirical error rate. Probabilistic learning engenders linear classifiers with error
rates that are typically more than three times those of the differentially-generated linear classifier.
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Figure 8.21: Left: Test sample classification summaries for the 650-parameter modified RBF classifier
employing differential learning (A,& ) and two forms of probabilistic learning (AP). TMe summaries are
based on 25 independent trials in which the DB I database is randomly partitioned into training and test
samples, each containing approximately 600 examples. The box plots are a non-paramnetric depiction of
the empirical test sample error rate's distribution over the 25 trials; the whisker plots depict the average
empirical test sample error rate plus and minus one standard deviation, thereby characterizing each classifier's
MSDE. Right: The difference between the probabilistically-generated models' empirical error rate and the
d ifferentially -generated model's rate on a trial-by-trial basis. These box plots show that differential learning
always produces the classifier with the lowest empirical error rate, as is the case with both 650-parameter
linear hypothesis classes. Probabilistic learning engenders RBF classifiers with error rates that are typically
two and a half to three times those of the di ffe rent ial ly -generated RBF classifier.

-0
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Estimated DBias, DVar, and MSDE (25 trials)

Hypothesis Learning Strategy

Class A_ (CFM) I Ap (MSE) I Ap (CE)

DBias 2.1 x 10-2 6.3 x 10-2 N/A

Linear DVar 6.3 x 10-1 1.2 x 10-4 N/A

MSDE 4.9 x 10-4 4.1 x 10-' N/A

DBias 2.1 x 10-2 3.4 x 10-2 4.1 x 10-2

Logistic Linear DVar 3.2 x 10--' 5.6 x 10-5 8.7 x 10-'

MSDE 4.7 x 10-4 1.2 x 10-1 1.8 x 10-1

DBias 4.0 x 10-2 11.9 x 10-2 10.1 x 10-2

Modified RBF DVar 1.1 x 10-4 2.7 x 10-4 1.3 x 10-4

MSDE 1.7 x l0-3 1.4 x 10-2 1.0 x 10-2

Table 8.2: Estimated discriminant bias, discriminant variance, and MSDE for 650-parameter classifiers
generated from the linear, logistic linear, and modified RBF hypothesis classes by differential learning (A,&)
via the CFM objective function and probabilistic learning (Ap) via the MSE and CE objective functions.
Estimates are based on 25 independent learning/testing trials in which the DB I database is randomly
partitioned into training and test samples, each containing approximately 600 examples. The differentially
generated classsifier's MSDE is 0 (1/101 that of its probabilistically generated counterparts' for all three
hypothesis classes.

Table 8.2 summarizes the estimated discriminant bias, discriminant variance, and MSDE of the classifiers

generated from the linear, logistic linear, and modified RBF hypothesis classes. Results are given for each

learning strategy, as appropriate. All values are based on the assumption that the Bayes error rate for

the DB I task is zero, given the compressed images (see section 8.2). The MSE-generated logistic linear

classifier's empirical MSDE is 2.5 times the differentially-generated classifier's; the CE-generated logistic

linear classifier's empirical MSDE is 4 times the differentially-generated classifier's. Most of the increase is

due to increased discriminant bias. For the linear and modified RBF hypothesis classes, the probabilistically-

generated classifiers' MSDE is an order of magnitude higher than the differentially-generated classifier's

(recall from chapter 3 that a classifier with lower MSDE constitutes a better approximation to the Bayes-

optimal classifier). Although most of the MSDE increase is due to increased discriminant bias, an appreciable

fraction of it is due to the increased discriminant variance of these hypothesis classes when paired with

probabilistic learning.

These findings are consistent with the theoretical predictions of chapter 3. The non-monotonic nature of

error measures clearly plays a role in the inefficient behavior of probabilistic learning strategies and explains
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in geometric terms why minimizing the classifier's functional error does not minimize its discriminant error

- proofs of which are given in section 3.4. The chapter 3 proof that differential learning produces the

relatively efficient classifier, regardless of the choice of hypothesis class, is clearly demonstrated by the

statistics in table 8.2.

8.4.4 Rejecting Classifications A.fter Learning

Table 8.3 reviews the empirical error rates for the benchmark test sample. Rates are given for classifiers

generated from the linear, logistic linear, and modified Guassian RBF hypothesis classes with differential

learning via CFM and probabilistic learning via MSE and CE. The logistic linear classifiers' error rates

correspond to figures 8.11 (CFM), 8.13 (MSE), and 8.15 (CE). The linear classifiers' error rates correspond

to figures 8.17 (CFM) and 8.19 (MSE). The modified Gaussian RBF classifiers' error rates correspond to the

text of section 8.4.2.
Table 8.4 shows the results of rejecting marginal classifications (i.e., those close to the reduced

discriminant boundary) for each of these classifiers. As described in section 7.6, the classifier rejects all

test examples that generate a top-ranked discriminant differential 6(1)(X 10) that is less than the default

rejection threshold 6 ,jed:

reject classification iff Y(t• - Y'f2) 5 brejett;

6(1) ( 119)(8.6)

0
(D.II)

Note that xp, is shown diagrammatically in figure D. 1. We use this differential rejection threshold for the

probabilistically-generated classifiers as well as the differentially-generated ones, since it yields better results

than MSE or CE-based thresholds (recall section 7.6).

"The differentially generated classifiers consistently reject no more than 6% of the test sample and exhibit

no more than a 1% error rate on the remaining (i.e., un-rejected) test examples. The consistency of these

rejection/error rates does not hold for the probabilistically-generated classifiers. Both probabilistically-

generated logistic linear classifiers reject no more than 6% of the test sample and exhibit no more than

a 2% error rate on (he remaining test examples, but the linear and modified Gaussian RBF classifiers'

rejection/error statistics are considerably worse. The MSE-generated linear classifier rejects approximately

9% of the test sample, and misclassifies approximately 2% of the remaining test examples. The MSE-

generated RBF classifier rejects approximately 15% of the test sample, and misclassifies approximately 5%

of the remaining test examples. The CE-generated RBF classifier rejects approximately 16% of the test

sample, and misclassifies approximately 3% of the remaining test examples.

ID
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Benchmark Empirical Error Rates

Hypothesis Learning Strategy

Class A, (CFM) Ap (MSE) Ap (CE)

Linear 2.3 (+ 1.4/-1 .2)% 5.0 (+ 1.9/-1 .8)% N/A

Logistic Linear 1.3 (+1.1/-0.9)% 2.7 (+1.4/-I.3)% 4.0(+1.7/-I.5)%

Modified RBF 2.0 (+1.3/-1.])% 1 1.5 (+2.7/-2.6)% 10.3 (+2.6/-2.4)%

Table 8.3: Empirical benchmark test sample error rates for 650-parameter classifiers produced from the
linear, logistic linear, and modified RBF hypothesis classes by differential learning (As) via the CFM
objective function and probabilistic learning (AP) via the MSE and CE objective functions. Ninety five
percent confidence intervals are based on the assumption that the error rates are binomially distributed [62].

Benchmark Rejection Rates / Error Rates

Hypothesis Learning Strategy

Class A__ (CFM) Ap (MSE) Ap (CE)

Linear Fraction of Teo Sample 4.2 (+1.7/-1.6)% 8.7 (+2.6/-2.3)% N/ALierRejece _

Fraction of Un-Rejected
Test Sample 0.9 (+0.9/-0.8)% 1.8 (+1.3/-I.1)% N/A

Misclassified

Logistic Linear RcofTeS e 5.8 (+2.1/-1.9)% 4.8 (+1.9/-1.7)% 5.5 (+2.0/-I.8)%

Fraction of Un-RejectedTest Sample 0.4 (+0.6/-0.4)% 1.2 (+!.]/-0.9)% 1.8 (+1.2/-!.])%
Mictmsifaled

Modified RBF Fracton of TetStauple 5.8 (+2.1/-1.9)% 15.2 (+3.0/-2.9)% 16.5 (+3.1/-3.0)%
Fraction of Un-Rejected

Te__staple 0.4 (+0.6/-0.4)% 5.3 (+2.1/-2.0)% 3.0 (+1.7/-1.5)%
Mi$cl=sfe

Table 8.4: Benchmark test sample rejection/empirical error rate statistics for 650-parameter classifiers

produced from the linear, logistic linear, and modified RBF hypothesis classes by differential learning (AA )
via the CFM objective function and probabilistic learning (Ap) via the MSE and CE objective functions.
Ninety five percent confidence intervals are based on the assumption that the error rates are binomially
distributed [62).
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As in section 7.6, we see that the inefficiency of probabilistic learning has a deleterious effect on 0
the process by which the classification hypothesis is accepted or rejected. Moreover, the rejection/error

statistics of probabilistically-generated classifiers are quite sensitive to the choice of hypothesis class.

This phenomenon is consistent with the theoretical arguments of section 3.4, in which we make a clear

distinction between minimizing discriminant error via differential learning and minimizing functional error

via probabilistic learning. The efficiency of differential learning ensures consistent rejection/error statistics

across a wide range of hypothesis classes.

8.5 Recognition Results in the Presence of Noise

As described in section 3.6, there are special cases in which probabilistic learning generates the efficient

classifier of X for small training sample sizes, whereas differential learning does so only for large training

sample sizes. Specifically, when the hypothesis class is a proper parametric model of X probabilistic

learning will generate the efficient classifier of X. •

This is illustrated in the case of the DBI OCR task when the original 256-pixel binary images are

corrupted by noise that takes the form of random independent pixel inversions throughout the image. This

form of noise is originally described in [411. When the probability of pixel inversion becomes relatively high

and the noise-corrupted images are subsequently compressed using the simple linear lossy scheme described 0
in section M.3, the resulting feature vector exhibits class-conditional pdfs that are very nearly Gaussian with

homoscedastic covariance matrices. As a result, both fully-parametric and partially-parametric proper models

exist for these compressed noisy characters.

We characterize the independent noise source as an additive one in order to derive a simple expression

for the signal-to-noise ratio (SNR) of the un-compressed noise-corrupted images. We then prove by an

application of the central limit theorem that compressing the noisy images generates an approximately

homoscedastic Gaussian feature vector, the approximation being better as the SNR drops toward -0.8 dB.

We find that differential learning generates a more efficient classifier, given any choice of hypothesis class,

as long as the un-compressed image SNR remains above approximately 2 dB. When the SNR drops to 1.2

dB the logistic linear hypothesis class becomes a good approximation to the proper parametric model of the

compressed noisy feature vector. As a result, classifiers generated probabilistically from this hypothesis class

with training sample sizes of n -_ 600 are more efficient than their differentially generated counterparts.

8.5.1 Signal-to-Noise Ratio (SNR) Computations

Recall from section 8.1 that the feature vector for the original un-compressed DB I digits is a 256-pixel

(16 x 16) binary vector with elements of + 1/-I, where black = - I and white = + 1. In order to simplify our

SNR expressions, we view this binary vector X as a simple affine transformation of another binary vector
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X with elements of {0, 1}, where black = I and white = 0:

x E X = {-I,1}26,

X -2,X + I; (8.7)

X = {X. X216}, X E 10, 1}1

Note that I denotes the identity vector. We refer to the un-compressed vector X rather than X

throughout the remainder of this chapter, trusting that the resulting mathematical simplifications are worth

the sleight-of-hand in (8.7).

Given X described above, we can characterize a noise-corrupted version of it, in which pixels are

independently and randomly inverted; the expression models the noise source as an additive, Bernoulli-

distributed random vector

S= {4 ..... ,26} E {-1,01' (8.8)

with diagonal covariance matrix E = p, q; [, where=I denotes the identity matrix, and the Bernoulli

probabilities P, and q, are given by'0

Pc= =; =--l)

(8.9)
q = p- =P(, = 0)

Given this expression for the random noise vector, the noise-corrupted version of X, which we denote by

V, is given by

= ix + 41
(8.10)

s.J. v'j = Ix + Vq i

In simple terms, all 256 noise vector elements are independent and identically distributed (i.i.d.) Bernoulli

random variables: the probability of pixel inversion is p,, and, by (8.8) and (8.10), when q = -1 the

noise-corrupted pixel vi is the inverse of its un-corrupted counterpart xi:

S Xi, qi = 0

_i =_ _, q__=:-: x=0 (8.11)

O, tq = -I n3 xi = 1

*nNole: a Bernoulli random variable that assumes the value -I with probability p and the value 0 with probability q = I - p
will have a mean value of -p and a variance pq = p( I - p). See (28. pg. 2441 for an example of the first and second moment
computations underlying these expressions.
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In order to derive a simple expression for the SNR of the noise-corrupted feature vector, we make the

simplifying assumption that each element of X is itself a Bernoulli random variable when considered over

the set of all 10 digits, and that all the elements of X are i.i.d. This assumption is of course invalid, but we

argue that it is permissible for the purpose of computing a simple measure of the noise-corrupted images'

SNR. Based on the statistics of the un-corrupted DB I database, the probability of a black pixel p., is 0.30,

and the probability of a white pixel q, is 0.70:

P., = P(xi = I) = 0.3

black pixel

q, = I - p.r = P(xi = 0) = 0.7

white pixel

As a result, we can express the SNR of the noise-corrupted DB I database in terms of the variances of the

Bernoulli random variables xi and q, thus:

SNR = 10 log 0o VarIJ dB

= 10 log1 0  dB (8.13)

= 10 loglo 0.2) dB

8.5.2 The Compressed Noisy Feature Vector is Approximately Homoscedastic Gaus-

sian

Using the compression scheme of section M.3, we compress four neighboring binary pixels into one 5-state

pixel. In so doing, the ( 16 x 16) image is compressed to an (8 x 8) image. Consider a single cluster of

four noise-corrupted pixels {(vi , t,/3 , Y,41 in the original 256-pixel image. This group of four pixels forms

a single pixel v' in the compressed image by the following transformation:

= 1 4 14 (8.14)

Sixty-four of these compressed pixels form the compressed noise-corrupted feature vector V'. We omit a

subscript when discussing individual pixels (i.e., individual elements of V'), opting instead for the generic

pixel notation v' in (8.14). We do this in the interest of notational simplicity, assuming that the reader

understands the relationship between the vector V/' and one of its 64 constituent pixels W/.

0L
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If we consider that the value of a pixel (black or white) in the original un-corrupted 256-pixel binary image

depends on the digit (i.e., the class that the image represents), we can express (8.14) in its class-conditional

form:

4 4

= ~j v4lwj = 4 Jxa(,) + .i(8.15)

In fact it is legitimate to consider the ith pixel xj in the original 256-pixel un-corrupted binary image as a

Bernoulli-distributed random variable with a class-conditional parameter Pl,, . That is, for a given digit WiI

xi will be black with probability p_,,',, and white with probability q.,I, = I - Px,l,-, such that the pdf of

xi, given Wj, is"I

P* IV (Xi1IWj) = q,, W(x) + P, t(t - I), (8.16)

where A denotes the Dirac delta function (e.g., (80, pg. 2661). From (8.8) and (8.9) the pdf of the noise

vector element ýi is

PJ(k0) = p(6(4 + I) + q(6(4) (8.17)

Since xi and ,i are independent, the pdf of xi + Q is the convolution of their individual pdfs (e.g., see

125, pg. 36]). As a result, the pdf of ,ilUIj is, by (8.10), (8.16), and (8.17),

p,,11%.(i4Iw~j) = NPrde + + 07d i6(11) + (P,;qr,1 , + PrIj..,q(" (' - (8.18)

Equation (8.18) shows that 1i is itself a Bernoulli-distributed random variable with parameter P,,I,",.

Although all the q, are independent, the xi are not. The hand-strokes that generated the original DB I

images induced a fair amount of spatial correlation in the pixels. We make the incorrect but simplifying

assumption that the pixels are indeed independent so that we can derive a tractable approximation to the pdf of

the compressed, class-conditional noise-corrupted pixel v/1Wj- By assuming statistical independence among

the original class-conditional constituent pixels x, 1 j, .... , x4JUWj, we can express the class-conditional pdf

p,,,Viw(V/1'j) as the convolution of p,,1W.("' 1,jW) ,... ,p,.l1V(v4I 1j), where * denotes the convolution

operator:

"II Since xi is countable, it has a probability mass function (pmi) rather than a probability density function (pdf). We consider the pmf
a special case of the pdf in which the pdf is expressed as a sum of Dirac delta functions, thus the expression in (8. 16)
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P,,,pV(1/"jLj) P P,,'("i•VVLj~) * P,,iV(12LIjj) * p,,jjv(,V.jL4j) * P,,Iw(L,4lWj) (8.19)

4 4 (4
4 )

]-[v j (' + E ., I)1q" -j
i= Ii=I

( p,,, I., p,,21,j q,',,Iw q,,4g1w + P,,21, p qjP ,, 1, q,, 1j_

+ + P,'p,'jP,,ljqvw, ,lq&.2jw + pv1jpjj jq,,2,lqj,, 41 j )6("' -

+ p,,1 -j P',4 j q&,2jwj q:,j, + p•.,, Pj,4 I-, qv,j wqv.1j

4 4 4

+ 1: o.,,.,q,,,j_, 6(v"- -4) + 17 0p,,,•(,v(/' - 1) (8.20)
k1" i= I i= I

Equation (8.20) is, in fact, a kind of binomial pdf (or pmf, strictly speaking) for the noisy compressed

class-conditional pixel v'l.j. The expression reduces to the familiar binomial form (n = 4,p = P.,,Iwj)

if all the P4,,.,, in (8.16) -- and, as a result, all the PI,l,,, in (8.20) -- are equal. The central limit

theorem assures us that the sum of a large number of independent random variables will have a pdf that

is approximately Gaussian. Indeed, the DeMoivre -- Laplace approximation can be viewed as a special

expression of the central limit theorem, by which binomial-distributed random variables are shown to be

very nearly Gaussian. The approximation is fairly good when the number of Bernoulli trials giving rise to

the binomial distribution is C[ 10] or greater and the binomial parameter p f ½ (e.g., [63, pg. 1861). Note

that since our compressed image pixel is the sum of four binary image pixels (i.e., the sum of a total of four

Bernoulli trials), the pdf p,,jiv(v'iWj) is an increasingly good approximation to a Gaussian random variable

as the noise probability p, approaches ½ (this corresponds to a signal-to-noise ratio of SNR -+ -0.8 dB).

Again, the goodness of the Gaussian approximation is diminished somewhat by the invalid assumption that -

the original image pixels are independent; nevertheless, the approximation proves to be reasonably good as

the image SNR drops below 2 dB (i.e., when p, > 0. 13).

Figure 8.22 illustrates the pdf p.,.1 W(,'IWj): the black arrows denote the Dirac delta functions of the

expression in (8.20) when the probability of pixel inversion is p, = 0.2 and P,,Ij is assumed to be 0.3 for -

all i. Under these conditions the OCR image signal to noise ratio is SNR = 1.2 dB, and p.,,iv(wIvjWJ) is

indeed a good approximation to the Gaussian pdf shown in light gray.

As the SNR drops below 2 dB, the compressed image pixels are increasingly independent of one another,

since the noise statistics begin to dominate the image. Under these circumstances, the noise-corrupted -

class-conditional feature vectors, which we denote by l'IW, (j = I . 10), become homoscedastic

0
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Figure 8.22: The probability density function p,,,Vi11 OV,(j) (shown with black arrows denoting the Dirac
delta functions of the pdf) for the noisy compressed DBI image pixel ILrWj when the probability of pixel
inversion is p, = 0.2, so that the OCR image signal to noise ratio is SNR = 1.2 dB. For the purpose of
this particular graphic, it is assumed that each noise-free pixel in the four being compressed ( jx 1 , ... x4 } )
has a 30% probability of being black (i.e., P,',Ij is assumed to be 0.3 for i = I, ... 4). The gray-shaded
background is the Gaussian pdf that p,,,i 1 (•/"Wj) approximates.

Gaussian-distributed. They satisfy the conditions of appendix F such that the logistic linear hypothesis

class constitutes the partially-parametric proper model of W/'. This phenomenon is demonstrated in the

experiments that follow.

8.5.3 Recognition Results for a Moderate SNR

Figure 8.23 shows moderately noise-corrupted versions of the compressed DB I digits shown in figure 8.5.

The images are arranged in a random order so that the reader has no order-based cues for recognizing the

digits. The compressed images are derived from the original 256-pixel binary images after the latter have

been corrupted by a noise source with p, = 0.1. That is, the binary pixels of the original images are

inverted (or "flipped") with probability 0. 1, a moderate amount of noise. By (8.13), the noisy image SNR

is therefore 3.7 dB. The noise-corrupted 256-pixel images - from which those in figure 8.23 are formed by

64 compression operations of the form in (8.14) -are shown in figure 8.33 (page 269). The sequence of

digits in figure 8.33 is different from that in figure 8.23. Both sequences are given on page 270, although we

ask the reader to indulge us by not peeking at the answers for a while.

Figure 8.24 shows the parameters of the logistic linear classifier generated by differential learning from

the first of the 25 moderately noise-corrupted training samples. The parametric entropy of all the classifier's

parameters is 3.46, versus 3.18 for the parameters of the logistic linear classifier differentially generated from

the noise-free benchmark training sample (cf. figures 8.24 and 8.6, page 228). The increased parametric
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Figure 8.23: Moderately noisy versions of the digits shown in figure 8.5. The order of the images has been
randomized so that the digits they represent cannot be inferred from their position on the page. The correct
labels for these examples are shown in figure 8.35. We encourage the reader to classify these images prior
to l'ioking at the correct labels. Figure 8.33 shows the original 256-pixel noisy images from which theselinearly compressed images were derived (the image sequence is different).

0 1 2 3 4

5 6 7 8 9N

Figure 8.24: Parameters of the differential logistic linear classifier generated from the first of 25 moderately
noisy DB I database training samples. Each of the 50 samples (25 training and 25 test, each containing
approximately 600 randomly selected examples) is corrupted wWith a different realization of the moderate-
intensity noise source. The entropy of these parameters is 3.46. reflecting the increased entropy of the
noise-corrupted images versus the original images (cf. figure 8.6).

0

0 1 2
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entropy reflects the increased information content of the training sample; the information increase stems from

the noise added to the images. Figure 8.25 summarizes the empirical test sample error rates for classifiers

generated from the logistic linear hypothesis class by differential and probabilistic learning. The statistics

* are obtained from the same 25 independent randomly-generated partitions of the DB I database used in the

earlier noise-free experiments. The noise corruption for each of the 25 different training/test samples is

independent of that for any and all other trials. Figure 8.25 shows that the differentially-generated logistic

linear classifier is somewhat more efficient than its probabilistically-generated counterparts for this nominal

training sample size and this moderate amount of noise corruption (SNR = 3.7 dB). The average empirical

test sample error rate is 6.6% for the differentially-generated classifier, versus 7.0% (MSE) and 7.5% (CE)

for the probabilistically-generated classifiers. All classifiers exhibit about the same empirical discriminant

variance ( -, 1.2 x I 0-4 ). The right-hand side of figure 8.25 shows that, although the differentially-generated

classifier's empirical MSDE is lower than the probabilistically-generated classifiers', differential learning

does not ronsistentlV generate the classifier with the lowest empirical test sample error rate. Probabilistic

learning via MSE generates a classifier with a lower empirical test sample error rate for about ene third

of all trials, and probabilistic learning via CE generates a classifier with a lower empirical test sample

error rate for about one quarter of all trials. The SNR of 3.7 dB resulting from the noise-corruption has

* altered the class-conditional pdfs of the digits in such a way that they have become better approximations

to homoscedastic Gaussian pdfs. As a result, the probabilistically-generated logistic linear classifier can

learn the noisy compressed images more efficiently relative to its differentially-generated counterpart than

it can when the images are noise-free. Specifically, consider the estimated relative efficiency of one learning

* strategy versus another, given a specific hypothesis class and a specific set of training/test samples:

Definition 8.6 The estimated relative efficiency of one learning strategy versus another: The

estinated relative efficiency (ERE or "EI. [AA'J lni ..... K} , G(69)] ) of one learniing strategy A

versus another A', given a specific hypothesis class G(09) and a specific set of K training/test samples

of sizes nI .... n . irkI and I / ..... K I respectivelY, is simplv the ratio of their estimated MSDEs

(definition 8.5):

0 -E [A ' I In', nIM , G()I A MRSDE [!9 {n1 fK , G(9), A]_ (8.21)
MRSDE [Cl 4n Ig. GeA

For K = 25 learning and testing trials (sample sizes are n, P I 600 i = I ... 25) with the

noise-free compressed digits and the logistic linear hypothesis class G(e), the ERE of differential learn-

ing (A.X ) versus prohabili, ic learning via CE (Ap.c(: ) is RE (,X, ,P(': I nn!..... ,G(6)J =
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0.26.12 The ERE of differential learning versus probahilistic learning via MSE (AP-MSE) is

a [AA ,Ap.ISEI {n, . nK} ,G(9)] = 0.38. These ERE figures are shown in table 8.5, and

they indicate that the differentially-generated logistic linear classifier is three to four times as efficient

as its probabilistically-generated counterparts for a nominal, noise-free training sample size of n _ 600

compressed digits.

Estimating the Bayes error rate for the noisy, compressed images: There is strong evidence that the

Bares error rate for the noise-free. compressed inmages is ine I zero. However. we are nerely guessing the

Bares error rate for the noisy, compressed images; it is important that the reader understand this, because

our guess affects the EREs that we quote below. We assume that Pe ('a,,e,) = 5% for the moderately noisy,

compressed images; we assunle that 1, (,, ) = i2% for the very noisy, compressed images described in

section 8.5.4. These estimates correspond to the lowest empirical test sample error rate exhibited by any clas-

sifter in any of the 25 learning/testing trials r'tt at each SNR. Clearly. if the estinmates are low, then our MSDE -

estimates based on thenm will be high: if the estimates are high, then our MSDE estimates based on thenm will

be low. Bias in ourMSDE estimates will. of course, introduce bias in our ERE estinmates. In simple terms, if we

have over-estimated the Bayes error late, our ERE values will be biased away from a value of unity; that is, all

MSDE estimates will be lower than their actual values, a phenomenon that exaggerates the difference between

learning strategy efficiencies. If we have under-estimated the Bayes error rate. our ERE values will be biased

towards a value of unity; that is. all MSDE estimates will be higher than their actual values, a phenomenon

that obscures an), differences between learning stratcgy efficiencies. We believe that our Ba'es error rate

estimates are reasonable; nevertheless, we urge the reader to interpret the resulting EREs conser.atively.

If we assume that the estimated Bayes error rate is 5% for the moderately noisy compressed images (we

stress that this number is a guess), the resulting EREs are !h [Aj , Ap.cE {...... K) , G(I)] = 0.48

and RE [As ,AP-MSF. I {nfl, n. ) ,G(19)] = 0.75 (see table 8.5). These ERE figures indicate that the

differentially-generated logistic linear classifier is between 1.3 and 2 times as efficient as its probabilistically-

generated counterparts for a nomi,-' training sample size of 600 moderately noisy, compressed digits. Note

that the ERE of differential learn &. given the logistic linear hypothesis class, has increased with decreasing

SNR - evidence that the compressed noisy images are more Gaussian-like (and, as a result, more properly

modeled by the logistic linear hypothesis class) than the noise-free compressed images were.

""
'2 We remind the reader that the estlimated Bayes error rate P, ('"a~, for the nolse-free compresed images is• O•
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Figure 8.25: Left: Test sample classification summaries for the 650-parameter logistic linear classifier
employing differential learning (Aa ) and two forms of probabilistic learning (Ap). The summaries are
based on 25 independent trials in which the DB I database is randomly partitioned into moderately noisy
training and test samples, each containing approximately 600 examples. The box plots are a non-parametric
depiction of the empirical test sample error rate's distribution over the 25 trials; the whisker plots depict
the average empirical test sample error rate plus and minus one standard deviation, thereby characterizing
each classifier's MSDE. Right: The increase in the discriminant error of the two probabilistically-generated
models over the differentially-generated model on a trial-by-trial basis. These box plots show that differential
learning does not always generate the classifier with the lowest empirical error rate. This is due to the low
(3.7dB) signal-to-noise ratio (SNR) of the examples and the compression scheme we employ (see figure 8.23):
the post-compression pdf of the noisy feature vector becomes increasingly Gaussian-like as the SNR drops,
so the probabilistically-generated logistic linear classifier becomes an increasingly good approximation to
the proper parametric model of the noisy, compressed digits.

40% HUMANS

35% 64 pixel

30%

1" 25%

20%
<0 15% I-•px!' 2.56 pixel

Figure 8.26: Left: The test sample classification summaries shown in figure 8.25 for the 650-parameter
(64-pixels/digit) logistic linear classifier employing differential learning ( A& ) and two forms of probabilistic
learning (Ap). Right: Classification summaries for fifteen human subjects asked to classify the 40 64-pixel
examples shown in figure 8.23. Far Right: Classification summaries for fifteen different human subjects
asked to classify the 40 256-pixel examples shown in figure 8.33, from which the compressed versions in
figure 8.23 are derived.



258 Chapter 8: Optical Character Recognition

Estimated Relative Efficiency (ERE) of Differential Learning A,
n zý600

Hypothesis Alternative Learning Strategy

Class SNR Ap (MSE) Ap (CE)

oo dB' 0.12 N/A

Linear 3.7 dBh 0.11 N/A

1.2 dBr 0.40 N/A

o• dB" 0.38 0.26

Logistic Linear 3.7 dBh 0.75 0.48

1.2 dB" 2.01 2.28

oo dB" 0.12 0.16

Modified RBF 3.7 dB - -

1.2 dB -

Table 8.5: The estimated relative efficiency (ERE) - see definition 8.6- of differential versus probabilistic
learning for the linear, logistic linear, and modified Gaussian RBF hypothesis classes (the nominal training
sample size is n • 600 compressed digits). If ERE < 1, differential learning generates a more efficient
classifier from the hypothesis class than the alternative learning strategy does, given the SNR. If ERE > I,
differential learning generates a less efficient classifier from the hypothesis class than the alternative learning
strategy does, given the SNR. ERE estimates are based on 25 independent learning/testing trials in which
the DB I database is randomly partitioned into training and test samples, each containing approximately 600
examples. Estimates are shown for all hypothesis classes, given the noise-free digits (SNR = oo). Estimates
are shown only for the linear and logistic linear hypothesis classes, given the noisy digits (SNR = 3.7 dB and
1.2 dB). Note that the only case in which differential learning does not generate the most efficient classifier 0
for a nominal training sample size of 600 is when the SNR = 1.2 dB and the logistic linear hypothesis class is
employed. Under these conditions, the logistic linear hypothesis class is a good approximation-to the proper
parametric model of the very noisy, compressed digits, so the CE-generated logistic linear classifier is a good
approximation to the efficient classifier.

'Estimated Bayes erro rate (i.e.. P, (Yj,) ) is assumed to be 0% for the noise-free compessed imaes.
bEstimated Bayes error rate is assumed to be 5% for the moderately noisy compressed images. 0
"Estimated Bayes error rate is assumed to be 12% for the very noisy compressed images.

Human Recognition of the Moderately Noisy Images

Figure 8.26 replicates the box plots in the left-hand side of figure 8.25 alongside box plots that summarize

the empirical error rates of fifteen human subjects. The human subjects were asked to classify the forty

images of figure 8.23, and their empirical error rates were computed according to (8.1) using Yl = 40.

The human experiment was not rigorously matched against the machine experiments. The humans were not

given any training examples. instead they relied solely on their prior knowledge of digit forms to perform

the classification task. Also, the humans made their classifications by viewing a laser-printed version of
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lthe 40 examples in figure 8.23, whereas the machine learned and subsequently recognized numeric feature

vectors. Presumably the printed character images do not contain the same information as their numeric

representations, owing to non-linearities in the production and perception of the gray-scale representations of

the compressed feature vector. In short, the experiment was almost surely biased against the human subjects.

These handicaps notwithstanding, all subjects were electrical and computer engineering graduate students,

who, tending to be fundamentally insecure over-achievers, were motivated to perform well on the task.' 3

Fifteen subjects classified the 64-pixel images in figure 8.23, and fifteen different subjects classified

the 256-pixel "parent" images in figure 8.33. Figure 8.26 (right) shows that the median empirical test

sample error rate for humans was 15% for the compressed images - approximately twice the differentially-

generated logistic linear classifier's median rate. Moreover, the human subjects' discriminant variance was

more than an order of magnitude higher than the logistic linear classifiers', as indicated by the comparative

spans of the box plots for the compressed image experiments. At this point, we encourage the reader to

classify the images in figures 8.23 and 8.33; then determine your empirical error rates by comparing your

classifications with the answers in figures 8.35 and 8.37.

Note that the human subjects who classified the un-compressed noisy images had a much lower median

empirical error rate of 2.5% than the median human rate for the compressed images (figure 8.26, far right), a

phenomenon that we discuss further in section 8.5.4.

Learning and Recognizing the Moderately Noisy Images with the Linear Hypothesis Class

Figure 8.27 summarizes the empirical test sample error rates for classifiers generated from the linear

hypothesis class by differential and probabilistic learning. The statistics are obtained from the same 25

independent randomly-generated partitions of the DB I database used in the logistic linear experiments.

Figure 8.27 shows that the differentially-generated linear classifier is more efficient than its probabilistically-

generated counterpart for this moderate amount of noise corruption (SNR = 3.7 dB). The average empirical

test sample error rate is 6. 1% for the differentially-generated classifier, versus 9.7% for the probabilistically-

(MSE)-generated classifier. Both classifiers exhibit about the same empirical discriminant variance (,-,

1.3 x 10-4). The right-hand side of figure 8.27 shows that the differentially-generated classifier consistently

generates the classifier with the lowest empirical test sample error rate. Probabilistic learning via MSE

generates a classifier with an empirical test sample error rate that is typically about 1.3 times that of its

differentially-generated counterpart. The MSE-generated classifier's empirical MSDE is about 10 times the

differentially-generated classifier's. This is reflected in the differential learning strategy's ERE, which is

RE [AA, AP-MSE I {n, .... , n,) , G(Q9)] = 0. 11 for the linear hypothesis class and the 3.7 dB SNR.

"I!We were surprised by the number of subjects who look the experiment as a real challenge and wanted to know how well they ha,.
done relative to the whole suhbect population When told that the machine did far better than they did. these subjects seemed uniformly
relieved to know that good performance on the task didn't require "'real" intelligence
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;igure 8.27: Left: Test sample classification summaries for the 650-parameter linear classifier employing
differential learning ( AA ) and the MSE form of probabilistic learning (AP). The summaries are based on 25
independent trials in which the DB I database is randomly partitioned into moderately noisy training and test
samples, each containing approximately 600 examples. The box plots are a non-parametric depiction of the
empirical test sample error rate's distribution over the 25 trials; the whisker plots depict the average empirical
lest sample error rate plus and minus one standard deviation, thereby characterizing each classifier's MSDE.
Right: The increase in the discriminant error of the probabilistic model over the differentially-generated
model on a trial-by-trial basis. Because the probabilistically-generated linear classifier remains an improper
parametric model of the compressed digits with decreasing SNR, differential learning always generates the
classifier with the lowest empirical error rate/MSDE.

These results stand in contrast to those for the logistic linear classifier (cf. figures 8.25 and 8.27). The

probabilistically-generatod linear classifier is consistently worse than its differe "ially-generated counterpart

because the linear hypothesis class re mains an improper parametric model of the noisy DB I feature vector

for all SNR values. As a result, differential learning's asymptotic efficiency, which holds for any and

all hypothesis classes, generates the relatively efficient linear classifier for these training sample sizes of

n % 600. Experiments were not conducted with the modified Gaussian RBF hypothe sis class because it is

clearly an improper parametric model of both the noise-free and noisy digits. For this reason, differential

learning would surely generate the most efficient RBF classifier, regardless of the SNR, just as it does for the

linear hypothesis class.

Finally, note that the test sample error rates, empirical MSDE, etc. for the differentially-generated logistic

linear and linear classifiers are virtually identical (cf. figures 8.25 and 8.27). This phenomenon follows the

trends we see in the noise-free experiments, and reflects the asymptotic efficiency of differential learning.

It generates classifiers with the same empirical MSDE from these two hypothesis classes because both

hypothesis classes are capable of forming the same piece-wise linear boundaries on feature vector space,

despite their functional differences.
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8.5.4 Recognition Results for a Low SNR

Figure 8.28 shows highly noise-corrupted versions of the compressed DB I digits shown in figure 8.5. Like

their moderately noisy counterparts, these images are arranged in a random order so that the reader has no

,rder-based cues for recognizing the digits. The compressed images are derived from the original 256-pixel

binary images after the latter have been corrupted by a noise source with p, = 0.2. That is, the binary

pixels of the original images are inverted (or "flipped") with probability 0.2, a high amount of noise. By

(8.13), the noisy image SNR is therefore 1.2 dB. The noise-corrupted 256-pixel images - from which those

in figure 8.28 are formed by 64 compression operations of the form in (8.14) - are shown in figure 8.34

(page 269). The sequence of digits in figure 8.34 is different from that in figure 8.28. Both sequences are

given on page 270; again, we ask the reader to indulge us by not peeking at the answers for a while.

Figure 8.29 shows the parameters of the logistic linear classifier generated by differential learning from

the first of the 25 highly noise-corrupted training samples. The parametric entropy of all the classifier's

parameters is 3.85, versus 3.46 for the parameters of the logistic linear classifier differentially generated from

the analogous moderately noisy training sample, and 3.18 for the parameters of the logistic linear classifier

differentially generated from the noise-free benchmark training sample (cf. figures 8.29, 8.24, page 254,

and 8.6, page 228). The increased parametric entropy reflects the increased information content of the

training sample stemming from the higher level of noise in the images. Figure 8.30 summarizes the empirical

test sample error rates for classifiers generated from the logistic linear hypothesis class by differential

and probabilistic learning. The statistics are obtained from the same 25 independent randomly-generated

partitions of the DB I database used in the earlier noise-free and moderate noise experiments, the only

difference being the increased level of noise corruption. The noise corruption for each of the 25 different

training/test samples is independent of that for any and all other trials. Figure 8.30 and table 8.5 show

that the differentially-generated logistic linear classifier is less efficient than its probabilistically-generated

counterparts for this nominal training sample size and this high amount of noise corruption (SNR = 1.2 dB).

The average empirical test sample error rate is 16.0% for the differentially-generated classifier, versus 14.7%

(MSE) and 14.4% (CE) for the probabilistically-generated classifiers. The differentially-generated classifier

exhibits an empirical discriminant variance of 1.7 x 10-4, and both probabilistically-generated classifier

exhibit an empirical discriminant variance of approximately 1.8 x 10-4. The right-hand side of figure 8.30

shows that differential learning never generates the classifier with the lowest empirical test sample error

rate: instead, probabilistic learning via the Kullback-Leibler information distance (CE) does. This is because

the SNR of 1.2 dB resulting from the noise-corruption with p, = 0.2 has altered the class-conditional

pdfs of the digits in such a way that they have become reasonably good approximatior , to homoscedastic

Gaussian pdfs. As a result, the CE-generated logistic linear classifier is a good approximation to the proper

parametric model of the ver *)oisy compressed feature vector: it can learn the very noisy compressed images

more efficiently than its differentially-generated counterpart can (recall section 3.6). Indeed, although the
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Figure 8.28: Very noisy versions of the digits shown in figure 8.5. The order of the images has been

randomized (the sequence differs from those in figures 8.28 and 8.34) so that the digits they represent cannot
be inferred fro~n their position on the page. The correct labels for these examples are shown in figure 8.36.
We encourage the reader to classify these images prior to looking at the correct labels. Figure 8.34 shows
the original 256-pixel noisy images from which these linearly compressed images were derived (the image
sequence is different).

0 1 2 3 4

5 6 7 8 9 0

Figure 8.29: Parameters of the differential logistic linear classifier generated from the first of 25 very
noisy DB I database trsiining samples. Each of the 50 samples (25 training and 25 test, each containing
approximately 600 randomly selected examples) is corrupted with a different realization of the high-intensity
noise source. The entropy of these parameters is 3.85, reflecting the increased entropy of the noise-corrupted
images versus those with less or no noise (cf. figures 8.24 and 8.6).

WIMPMMENEV
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MSE-generated logistic linear classifier is not, strictly speaking, the proper parametric model of the noisy

compressed feature vector, it is also a good approximation thereto. As a result, the MSE-generated logistic

linear classifier consistently exhibits a lower empirical test sample error rate than the differentially-generated

classifier's. Table 8.5 confirms these facts by showing that the differential learning strategy's EREs are
0 E [A& ,Ap.msE 101, -... nK} .G(e)] = 2.01 and kt [Aa ,Ap.CE I 411...K. IG(e)] = 2.28

for the logistic linear hypothesis class and the 1.2 dB SNR.

As we have stated before, the statistical literature details an extensive collection of hypothesis testing

procedures (e.g., see [1401) by which it is possible to determine whether or not a chosen hypothesis class

is a good approximation to the proper parametric model of the feature vector. If the improper hypothesis is

reject,: (i.e., if the parametric model is determined to be proper), then we are justified in using the appropriate

form of probabilistic learning and we are justified in expecting that the resulting classifier will be a good

approximation to the efficient classifier for small training sample sizes. If, on the other hand, the improper
hypothesis is not rejected (i.e., if the parametric model is determined to be improper), then we are better off

using differential learning, which is guaranteed to produce the relatively efficient classifier for large training

sample sizes (and generally does so for small training sample sizes).

* Human Recognition of the Very Noisy Images

Figure 8.31 replicates the box plots in the left-hand side of figure 8.30 alongside box plots that summarize

the empirical error" rates of fifteen human subjects. The human subjects were asked to classify the forty

images of figure 8.28, and their empirical error rates were computed according to (8. 1) using q, = 40. Like
0 the moderately noisy experiment, the very noisy human experiment was not rigorously matched against the

machine experiments, so it was almost surely biased against the human subjects for the reasons described

earlier.
Fifteen subjects classified the 64-pixel images in figure 8.28, and fifteen different subjects classified the

* 256-pixel "parent" images in figure 8.34. Figure 8.31 (right) shows that the median empirical test sample

error rate for humans was 37% for the compressed images - more than 21 times the CE-generated logistic

linear classifier's median rate. As in the moderately noisy experiment, the human subjects' discriminant

variance was more than an order of magnitude higher than the logistic linear classifiers' (indicated by the

comparative spans of the box plots for the compressed image experiments). At this point, we encourage the

reader to classify the images in figures 8.28 and 8.34; then determine your empirical error rates by comparing

your classifications with the answers in figures 8.36 and 8.38.

Note that the disparity between the error rates of the human subjects who classified the un-compressed

noisy images and those who classified the compressed images is substantially less than it was for the

moderately noisy images (the median empirical error rate was 30% for the un-compressed high-noise images,

versus 37% for the compressed high-noise images: see figure 8.31, far right and right, respectively). Simply



264 Chapter 8: Optical Character Recognition

put, when the image SNR is greater than 2 dB, the human subjects distinguish the digits in (he un-compressed

noisy images more easily than they can in the compressed versions. As the SNR drops to 1.2 dB, the

un-compressed images become nearly as hard to recognize as their compressed counterparts.

We are not qualified to ponder whether or not humans have and use proper parametric models for

learning - a question that goes well beyond our interest and expertise. We have included these relatively

un-controlled human experiments simply to illustrate that the differences among the three logistic linear

classifiers are insignificant when compared to the differences between the machine and human experiments.

All the machine learning approaches out-classified the human subjects by a substantial margin when the

digits were corrupted by large amounts of noise. We find this result interesting in its implications for future

comparisons of synthetic (i.e., machine-based) and organic (e.g., human) learning systems.

Learning and Recognizing the Very Noisy Images with the Linear Hypothesis Class

Figure 8.32 summarizes the empirical test sample error rates for classifiers generated from the linear

hypothesis class by differential and probabilistic learning. The statistics are obtained from the same

25 independent randomly-generated partitions of the DB I database used in the high-noise logistic linear

experiments. Figure 8.32 and table 8.5 show that the differentially-generated linear classifier is more efficient

than its probabilistically-generated counterpart for this high amount of noise corruption (SNR = 1.2 dB).

The average empirical test sample error rate is 15.4% for the differentially-generated classifier, versus

17. 1% for the probabilistically- (MSE)-generated classifier. Both classifiers exhibit about the same empirical

discriminant variance (- 1.6 x 10-4). The right-hand side of figure 8.32 shows that the differentially-

generated linear classifier consistently generates the classifier with the lowest empirical test sample error rate.

Probabilistic learning via MSE generates a classifier with an empirical test sample error rate that is typically

about 1.8% higher than (or 1. 13 times) that of its differentially-generated counterpart. The MSE-generated

classifier's empirical MSDE is about 2½ times the differentially-generated classifier's. This is reflected in

the differential learning strategy's ERE, which is Q [AA, AP.MsE I i..... ,nx}, G(&)] = 0.40 for the

linear hypothesis class and the 1.2 dB SNR.

These results stand in contrast to those for the logistic linear classifier (cf. figures 8.30 and 8.32). The

probabilistically-generated linear classifier is consistently worse than its differentially-generated counterpart

because, as in the moderately noisy experiments, the linear hypothesis class remains an improper parametric

model of the noisy, compressed DB I feature vector for all SNR values. As a result, differential learning's

asymptotic efficiency, which holds for any and all hypothesis classes, generates the relatively efficient linear

classifier for these training sample sizes of n % 600. Again, experiments were not conducted with the

modified Gaussian RBF hypothesis class because it is clearly an improper parametric model of both the

noise-free and noisy digits - differential learning would surely generate the most efficient RBF classifier.
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Figure 8.30: Left: Test sample classification summaries for the 650-parameter logistic linear classifier
employing differential learning (As ) and two forms of probabilistic learning (Ap). The summaries are
based on 25 independent trials in which the DB I database is randomly partitioned into very noisy training
and test samples, each containing approximately 600 examples. The box plots are a non-parametric depiction
of the empirical test sample error rate's distribution over the 25 trials; the whisker plots depict the average
empirical test sample error rate plus and minus one standard deviation, thereby characterizing each classifier's
MSDE. Right: The increase in the discriminant error of the two probabilistically-generated models over the
differentially-generated model on a trial-by-trial basis. These box plots show that differential learning never
generates the classifier with the lowest empirical error rate. This is because the logistic linear hypothesis class
employing probabilistic learning approximates the proper parametric model of the very noisy feature vector:
the class-conditional pdf for each digit is now dominated by noise (SNR = 1.2dB) and is approximately

0 Gaussian distributed, owing to the compression scheme we employ (see sections 8.5.1 and 8.5.2).
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Figure 8.31: Left: The test sample classification summaries shown in figure 8.30 for the 650-parameter
(64-pixels/digit) logistic linear classifier employing differential learning ( A& ) and two forms of probabilistic
learning (Ap). Right: Classification summaries for fifteen human subjects asked to classify the 40 64-pixel
examples shown in figure 8.28. Far Right: Classification summaries for fifteen different human subjects
asked to classify the 40 256-pixel examples shown in figure P' - ' from which the compressed versions in
figure 8.28 are derived.



266 Chapter 8: Optical Character Recognition

APfMSE)
20% 20%

A,(CFM) T

15% 1.15%

10% . 10%
<0<

CD Ap(MSE)

5% ~~~~~~5% --------- 13

0% _ _0%

Figure 8.32: Left: Test sample classification summaries for the 650-parameter linear classifier employing
differential learning (Aj ) and the MSE form of probabilistic learning (Ap). The summaries are based on
25 independent trials in which the DB I database is randomly partitioned into very noisy training and test
samples, each containing approximately 600 examples. The box plots are a non-parametric depiction of the
empirical test sample error rate's distribution over the 25 trials; the whisker plots depict the average empirical
test sample error rate plus and minus one standard deviation, thereby characterizing each classifier's MSDE.
Right: The increase in the discriminant error of the probabilistic model over the differentially-generated
model on a trial-by-trial basis. Because the probabilistically-generated linear classifier remains an improper
parametric model of the compressed digits with decreasing SNR, differential learning always generates the
linear classifier with the lowest empirical error rate. Although differential learning yields the relatively
efficient classifier for the linear hypothesis class, it does not generate the efficient classifier. The efficient
classifier is approximated by the logistic linear hypothesis class/probabilistic learning (Kullback-Leibler)
combination, a proper parametric model approximation that exhibits a slightly lower average empirical error
rate (cf. figure 8.30).

Finally, note that the test sample error rates, empirical MSDE, etc. for the differentially-generated linear

classifier are all slightly lower (i.e.. better) than those for the differentially-generated logistic linear classifier

(cf. figures 8.30 and 8.32). This phenomenon is at odds with the trends we see in the noise-free experiments.

We suspect (but have not substantiated) that it might relate to the issue of model complexity versus training

sample size. That is, the functional complexity of the logistic linear hypothesis class might be somewhat

higher than that of the linear hypothesis class. If this is true, then the logistic linear classifier might have

excessive functional complexity for a small training sample of very noisy digits, resulting in its slightly

higher empirical MSDE.

8.6 Summary

The AT&T DB I optical character recognition (OCR) task serves to illustrat' the theoretical findings of

part I. We have shown that compressing the digit images allows us to reduce the complexity of the classifiers

we employ in the OCR task. By lowering the classifier complexity we improve the generalization of all 0
classifiers, but the improvement is most pronounced for the differentially-generated classifiers. This is
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because differential learning is guaranteed to generate the relatively efficient classifier, regardless of the

choice of hypothesi- class. Although large training sample sizes are necessary to guarantee that differential

learning will be efficient, the trait generally holds for small training sample sizes as well (i.e., as long as the

hypothesis class is an improper parametric model of the data).

Learning to recognize noisy versions of the compressed DB I digits provides us with the conditions under

which differential learning is not the most efficient learning strategy for small training sample sizes. Because

the very noisy compressed digits are nearly Gaussian distributed with homoscedastic class-conditional

pdfs, the CE-generated logistic linear classifier constitutes a proper parametric model of the noisy data;

probabilistic learning is therefore the more efficient learning strategy. As we have mentioned a number of

times already, there are well-known procedures for assessing whether or not the hypothesis class is a proper

parametric model of the feature vector, so it is relatively straightforward to detect the circumstances under

which differential learning might not be the most efficient strategy. Absent a strong indication to the contrary,

differential learning is the prudent, efficient choice.

Readers familiar with Geman, Bienenstock, and Doursat's lovely paper on regression and classification

with neural networks [411 (we will refer to the authors as "GBD" henceforth) will recognize our use of

their noise protocol to corrupt the DB I digits. Those readers will also note that our noise-free average

empirical error rates of 2% and very noisy rates of 14.5% are substantially lower than GBD's, which were

approximately 16% and 40%, respectively.' 4 Part of the disparity surely stems from their using training

sample sizes of only 200: ours were 600. However, we conclude by virtue of our own control experiments

with probabilistic learning that much of the disparity stems from their use of probabilistically-generated

high-complexity classifiers. Indeed, their typical MSE-generated classifier had 0 16700] parameters, whereas

ours have only 650 parameters. To be sure, our simple classifiers are generally incapable of modeling the

DBI data with lowfunctional error, but our objective is merely to model the data with low discriminant error

- an objective that we achieve consistently well with differentially-generated low-complexity classifiers.

Our results lead us to dispute GB!'s implication that a "good representation", determined a priori

by careful engineering, is a prerequisite for good generalization when the ultimate objective is pattern

classification.15 Instead, we argue that an efficient learning strategy is the most important prerequisite

for good generalization. Given this, one can employ simple, potentially improper parametric models (i.e.,

potentially poor representations, as defined by GDB), yet achieve robust generalization - a theoretical fact

by the proofs of part I, clearly illustrated by the DB I experiments of this chapter. Indeed, the robust beauty

of differentially-generated models is that they need not be proper to yield robust generalization. Thus, "ne's

choice of representation is no longer a critical factor on which the classifier's ability or failure to discriminate

140ur error rates are for the 650.-parameter logistic linear cla.sifier, which is the simplest form of multi-layer perceptron (MLP). one
having no hidden layer units. The logistic linear classifier recognizes 64-pixel images. GBD's error rates are for an MLP with 25 hidden
layer units, a substantially more complex hypothesis class possessing 6685 parameters. Their MLP recognized 2.56-pixel images.

"We wholeheartedly support their implication when the objective is function approximation. as it is in regression tasks. We remind
the reader, however, that regression and pattern classification are two very different tasks.
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well hinges.
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Figure 8.33: Moderately noisy 256-pixel digits formed by flipping the binary pixels of the original DB I
database with probability 0. 1. This form of artificial noise corruption is described in 1411. The signal-to-noise
ratio (SNR) of these images is 3.7dB. The digits shown in figure 8.23 are generated by linearly compressing
these images. The correct labels for the digits are shown in figure 8.37. We encourage the reader to classify
these ;--ages prior to looking at the correct labels.

Figure 8.34: Very noisy 256-pixel digits formed by flipping the binary pixels of the original DB I database
with probability 0.2. The signal-to-noise ratio (SNR) of these images is 1 .2dB. The digits shown in figu~re 8.28
are generated by linearly compressing these images. The correct labels for the digits are shown in figure 8.38.
We encourage the reader to classify these images prior to looking at the correct labels.
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3 1 2 9 4 0 8 8 8 9

4 4 7 8 6 7 0 7 2 1

0 9 1 3 2 4 3 6 5 1

5 0 6 9 6 7 5 3 5 2

Figure 8.35: Correct labels for the digits in figures 8.23.

8 2 0 5 8 6 5 6 9 8

6 8 0 9 7 3 5 1 9 7

9 1 3 7 7 6 0 4 4 2

4 3 2 1 0 1 5 4 2 3

Figure 8.36: Correct labels for the digits in figures 8.28.

5 4 2 4 3 9 1 7 3 6

2 1 3 9 8 7 6 1 4 2

9 8 4 6 0 1 0 5 7 7

8 0 0 5 6 3 5 9 2 8

Figure 8.37: Correct labels for the digits in figures 8.33.

0 2 8 4 7 1 2 4 2 1

8 5 7 3 3 2 7 7 5 5

9 8 9 3 4 3 8 4 6 0

6 1 6 5 0 9 6 1 9 0

Figure 8.38: Correct labels for the digits in figures 8.34.
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Chapter 9

Medical Diagnosis with Differential
Learning'

Outline

We use a simple logistic linear classifier employing differential learning to diagnose avascular necrosis

(AVN) of the femoral head, a potentially crippling hip joint disorder. The diagnosis is rendered from

magnetic resonance images. Specifically, we repeat the experiments of Manduca, Christy, and Ehman

[901; we compare the diagnostic accuracy of a differentially-generated logistic linear classifier and two

probabilistically-generated controls (including the logistic regression model) with their original results.

When presented with approximately sixty training images and subsequently evaluated on the same number

* of test images, the differentially-generated logistic linear classifier discriminates between healthy and AVN

compromised femoral heads with a 5.9% error rate. This error rate is slightly lower than the 7.5% error rate

of humans without formal training in radiology, reported in [90]. The differentially-generated logistic linear

classifier generalizes better than the probabilistic controls and the best previous machine model, a multi-layer

perceptron having approximately 24 times the number of parameters (6,164, versus 257 for the logistic linear

classifier).

9.1 Introduction

0 Avascular necrosis of the femoral head is a disease in which the blood supply to the head of the femur is

restricted, causing loss of bone marrow. Manduca, Christy, and Ehman have used neural network classifiers

to detect the presence of this disorder from magnetic resonance images (MRIs) of 40 adult patients [90J. The

image database they generated for the task contains 125 images, 51% of which indicate the presence of AVN.

Details of the database are given in [901. Figure 9.1 shows fourteen examr,,;. of thesc MRI images: each

'We thank Dr. Armando Manduca of the Mayo Clinic/Foundation for providing us with the magnetic resonance image data for this
task along with statistics and insights from the original experiments in [901.
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image is a 1024-pixel ( 32 x 32 ) image, and the pixels have four-bits of precision (i.e., they have 16 possible

values: dark image pixels represent negative values, and light pixels represent positive values). The image is

of the femoral head, the ball at the top of the femur that mates with the hip socket. As figure 9.1 illustrates,

the presence of AVN is manifest as dark regions in the light-shaded ovally-shaped bone mass. These dark

regions indicate the absence of water-containing bone marrow and fat - conclusive evidence of AVN. The

dark annular region surrounding the marrow and fat is cortical bone (i.e.. the bone's hard outer surface). The

surrounding light material is fluid in the joint space; the surrounding dark material is generally cartilage. 2 It

is obvious from these images that there is some variance in the size of the femoral head among subjects. As a

result, a correct diagnosis in part hinges on being able to distinguish the cortical bone and cartilage (present

in all of the images) from AVN sites.

We begin by learning all 125 images with a simple classifier possessing the single logistic linear

discriminant function (section 7.2.2)3

gi(X]0) = I + exp (-XIT0) (9.1)

where X is the N = 1024 pixel image vector, X' is the N + I = 1025 dimensional augmented feature

vector formed by adding a single element of unit value to X (see (7.2) ), and 6 E e = R N+I is the

N + I dimensional parameter or weight vector. The single discriminant function gt(X 10) E [0,11 is

associated with a healthy diagnosis. That is, when gi (X 1 0) > 0.5, the classifier makes a healthy diagnosis;

when g, (X 10) < 0.5 the classifier makes an AVN diagnosis. We can cast this single output classifier

into the canonical form described in section 2.2.1 simply by imagining a second discriminant function

g2(X I0) = I - g, (X I0) associated with an AVN diagnosis.

Figure 9.2 (left) illustrates the parameters (or weights) formed when this logistic linear classifier learns to

diagnose all 125 images correctly using differential learning. Dark pixels in the left display represent negative

weights, and light pixels represent positive weights. The far-left column of the left display contains only

one vertically-centered pixel. This pixel represents the "bias" parameter corresponding to the unit-value

element prepended to X in order to form the augmented feature vector X' of (7.2). The gray shade

of the far-left pixel column represents the value zero (for reference). The lighter weights have positive

values and correlate with dark AVN-compromised regions in the MRI images. The darker weights have

negative values and correlate with dark regions in the MRI images that are common to healthy examples

(e.g., conical bone and cartilage). A visual comparison of figure 9.2 (left) with the AVN-compromised

examples in figure 9.1 confirms these relationships. One notable aspect of the 1025 weight image is its low
2We thank Dr. Martha McDaniel. M.D., of the VA Medical Center, White River Junction. VT. and the Datlmoulh-Hitchcock Medical

Center. Lebanon, NH. for her primer on femoral head MRI interpretation. In truth, the process of image interpretation is complex.
performed by experts with extensive training. In addition, the spin sequence used in generating the MRI has a significant impact on how
the image is interpreted. Our description of the image composition is therefore a general one. 0

"3We use a single discriminant function for this C = 2-class problem because it has one-halt the number of parameters a classifier
with two discriminant functions would have. Excess complexity is anathema.
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49 50 52 56 57 62 71

0ohm
53 58 65 69 74 76 80

Figure 9.1: Fourteen 1024-pixel examples of healthy (bottom row) and AVN compromised (top row) femoral
heads. The number below each image is its index number in the 125-image database described in [90] (our
indeces run from 0 -- 124).

0.364 Entropy = 2.I•

0.182

0.ooo

S-1 0

Figure 9.2: Left: The parameters of a 1024-pixel logistic linear classifier, obtained by differentially learning
all 125 example images. Light parameters (or weights) are positive and detect AVN-related dark regions in
the image; dark weights are negative and detect dark regions in the image (cortical bone and cartilage) not
associated with AVN. Weight smoothing (described in section M.2) is applied during learning to minimize
the parametric entropy (definition M. I) of the weights (i.e., the amount of information they store). This in
turn reduces discriminant variance across learning trials. Right: A histogram of the weights in the left figure.
Note the parametric entropy of the weights is 2.2, reflecting the low variance in the distribution of weights
cause,! by -mnothing. This low variance/paiminetric enuopy accounts for the low-conuast in the weight
display on the left.
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contrast: the gray scale of weights changes abruptly in only a few regions of the display. This is because

the classifier employs weight smoothing (described in section M.2) during learning in order to minimize
the parametric entropy (definition M. I) of its weight vector, an empirical measure that we use to gauge the

weight vector's information content. Weight smoothing reduces the classifier's discriminant variance, since

only the information essential to learning is retained. Because the classifier learns all 125 examples with a

moderate amount of weight smoothing (K. = 0.05 ),4 its weight vector's parametric entropy is a relatively
low 2.16, which reflects the low variance in the histogram of the weights (figure 9.2, right).

These factors indicate that the effective number of classifier parameters 1971 is much lower than 1025.

Furthermore, they suggest that the degree of image resolution necessary for a correct diagnosis is relatively

low. As a result, we generate a database of linearly compressed 256-pixel ( 16 x 16) images from the
original database of 1024-pixel (32 x 32 ) images. The linear lossy compression algorithm is described in

section M.3. Figure 9.3 shows the compressed versions of the MRIs in figure 9.1. Figure 9.4 (left) illustrates

the weights formed when a 257-parameter5 logistic linear classifier learns to diagnose all 125 compressed

images correctly using differential learning. This classifier also employs weight smoothing (K = 0.02).

As with the higher-resolution classifier, the lighter weights have positive values that correlate with dark

AVN-compromised regions in the MRI images, and the darker weights have negative values that correlate
with dark regions in the MRI images that are common to healthy examples. Figure 9.4 (right) indicates that

the 257-element parameter vector has higher parametric entropy than its 1025-element counterpart. This is
reflected in the increased variance of the 257 weights' histogram and suggests that the average weight in

the lower complexity classifier encodes more discriminant information than the average weight in the higher

complexity classifier.

The lower resolution MRIs are definitely harder to learn than the high-resolution images. The 1025-

parameter classifier learns all the examples with t/, t 0.3, whereas the 257-parameter classifier must reduce

Vl, to 0.07 before it can learn all 125 examples. Figure 9.5 shows the final state of the low-complexity

(257-parameter) classifier after learning. All examples lie on the reduced discriminant continuum (i.e.,

the line between the upper left and lower right corners of reduced discriminator output space) because the
classifier has only one output; our earlier specification of the phantom second output ensures this. Note that

the hardest examples (including examples 48 and 49) engender vety small positive discriminant differentials;

the classifier has low confidence in its diagnosis of these examples.

4 The weight smoothing parameter K has a value between zero and one (see appendix M). A value of zero results in no smoothing;
a value of one forces all weights to have the same value. From a qualitative perspective, any value of K > 0. 1 is large, any value of
K > 0.01 is moderate, and any value of K < 0.01 is small.

'There is one discriminant function, and the augmented compressed feature vector has N + I = 257 elements. Therefore the
classifier has 257 total parameters.
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Figure 9.3: The images in figure 9. 1, linearly compressed to 256 pixels.

0.233- Enropy = 2.9342

0.117

* 0.000
o..... . ..... ... 0..... _

-1 0 1

Figure 9.4: Left: The parameters of a 256-pixel differentially-generated logistic linear classifier, obtained by
learning all 125 example images. Weight smoothing is applied during learning to reduce discriminant variance
across learning trials. Right: A histogram of the weights in the left figure. Note the parametric entropy of
the weights is 2.9, reflecting a moderate increase in the weight distribution's variance (cf. figure 9.2). This
increased variance/parametric entropy accounts for the slightly increased contrast in the lower-resolution
weight display.
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# S = 0.07
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Figure 9.5: The 257-parameter differentially-generated logistic linear classifier's output state -as projected
onto the reduced discriminant continuum - after learning all 125 AVN examples. This output state
corresponds to the parameters shown in figure 9.4 (right). Note that the low CFM confidence parameter

VY= .077 (resulting in a steep sigmoidal form of CFM) is necessary to learn examples 48 and 49 (see
figure 9.8). These examples generate very small positive discriminant differentials, corresponding to the
classifier's low confidence in its diagnosis.
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9.2 Recognition Results

In order to assess how well the low-complexity logistic linear classifier generalizes, we repeat an experiment

described in [90] in which the 125 example database is randomly partitioned into training and test samples of

approximately equal sizes. Specifically, we run 55 2-fold cross validation trials; ite each trial, each example
is randomly assigned to the training sample with probability ½ those examples not assigned to the training

sample constitute the test sample. The classifier learns for 125 epochs or for 5 epochs beyond the point at

which all training examples are classified correctly, whichever is less. All the trials are conducted according

to the general protocols set forth in section 8.2. The confidence parameter is set to 0, = I , and the weight

smoothing factor is K = 0.02. These measures are taken to reduce the classifier's empirical discriminant

variance across trials: training sample sizes average 62 examples, a small number even foc the compressed

images; as a result, we want the classifier to learn only those examples in which it has high confidence.

Figure 9.6 illustrates the final reduced discriminator output state after a typical learning trial for which the

training sample size is 58 and the test sample size is 67. Training examples are shown as dark gray dots and

test examples are shown as black triangles. The classifier learns all the training examples (most with high

confidence), but misclassifies three test examples.

* From a diagnostic perspective, the null hypothesis is that the image is of a healthy femur; the alternative

hypothesis is that the image is of an AVN-compromised femur. The classifier's sensitivity to the alternative

hypothesis is the probability that it will detect AVN when it is indeed present. The classifier's specificity

is the probability that it will not incorrectly classify a healthy image as AVN-compromised. Figure 9.7

* (left) shows the estimated sensitivity and specificity (with 95% confidence bounds) for the classifier in

figure 9.6. This classifier's sensitivity is 91.4 (+8.6/-I 1.7)%, so it fails to detect 8.6 (+11 .7/-8.6)% of the

AVN-compromised test examples. The classifier's specificity is 100 (+0.0/-8.9)%, so it never incorrectly

classifies a healthy test example as AVN-compromised (modulo the confidence bound). Figure 9.7 (right)

shows the receiver operating characteristic (ROC) [134, sec. 2.2.2] for the classifier's ability to detect AVN.

The discontinuities in the ROC are due to the small test ! le size (67) on which it is based. Taken in the

context of this small sample size and the large confidence bounds on the sensitivity/specificity statistics, the

ROC power of 0.93 cannot be viewed as anything more than a gross measure of the classifier's detection

capabilities. That is, we know that the classifier has reasonably good AVN detection characteristics, but there
9 is insufficient data to state specifically how good these characteristics are.

One fact is certain from the trials: the information loss due to image compression has an impact on

the classifier's ability to detect AVN. Figure 9.8 illustrates why. The figure shows the original 1024-pixe!

images (top) of the three examples misclassified by the classifier in figure 9.6. The three images below the

high-resolution ones are their compressed versions. After compression it is difficult to discern the signs of

AVN in examples 37 and 48; example 49 looks compromised to the human eye, but the low complexity
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Figure 9.6: The 257-parameter differentially-generated logistic linear classifier's output state - as projected
onto the reduced discriminant continuum - after a typical learning trial for which the training sample size is
58 images selected randomly from the pool of 125 total images. The model learns all training examples, but
misclassifies three of the 67 test examples: 37, 48, and 49 (see figure 9.8). These misclassifications appear
on the "incorrect" side of the reduced discriminant boundary; their discriminant differentials are -.89, -.99,
and -.99 respectively. The large negative differentials indicate that the classifier is relatively confident in its
incorrect diagnosis, based on the 58 training examples it has learned.
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Figure 9.7: Left: The differentially-generated logistic linear classifier's sensitivity and specificity for the
trial depicted in figure 9.6; 95% confid& ice bounds are given for rv and /3, and are computed as described
in 1621. Right: The associated receiver operator characteristic for detecting an AVN-compromised femoral
head (based on the test sample for this trial - middle row of the table on the left).

(i.e., 257-parameter) logistic linear classifier consistently evaluates this example as healthy. In reducing

the classifier complexity by a 4 : I compression of the feature vector's dimensionality, we reduce the

classifier's discriminant variance. This ensures that the classifier's error rate remains reasonably consistent

across independently drawn training/test samples. The price we pay for this decreased discriminant variance

is an increase in discriminant bias: some examples (e.g., 37, 48, and 49) become difficult to classify at lower

resolution.
This reveals an interesting manifestation of the bias/variance tradeoff common to all estimators. In the

case of AVN diagnosis from MRI images, the nature of the disease sometimes requires high-resolution

imagery for a. -frrect diagnosis (i.e., for low discriminant bias). This requirement, in turn, dictates higher

classifier complexity. The increased complexity demands more data to ensure that the classifier's discriminant

variance is low (i.e., that the more complex classifier will be sure to make consistent diagnoses).

Figure 9.9 summarizes the results of the 55 2-fold cross validation trials run on the compressed AVN

images. The left side of the figure compares differential learning with two forms of probabilistic learning: the

257-parameter logistic linear classifier is used in each case, and all aspects of learning are identical except for

the objective function (learning strategy) employed (see section 8.2). The classifier employing differential

learning ( Aa ) has an average empirical test sample error rate of 5.9%, compared with 7.4% and 7.9% for the

MSE and CE-generated variants. The classifier's empirical discriminant variance is approximately 8 x 10-4
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1024 Pixel Images

37 48 49

I "'

256 Pixel Images

Figure 9.8: The three test images that the differentially-generated logistic linear classifier of figure 9.6
misclassifies. The classifier is presented the 256-pixel images in the bottom row ot the figure: for these
particular examples, Lompression from 1024 to 2_56 pixels results in the loss of information critical to a
correct classification. In fact, the low-complexity linear classifier consistently misclassifies examples 48 and
49; it misclassifies example 37 in mawy of the 55 2-fold cross validation trials.

with differential learning and 9 x 10- 4 with probabilistic learning. The right side of the figure compares

the probabilistically generated classifiers with the diffe'--ntially-generated one on a trial-by-trial basis. On

average, the MSE-generated classifier's empirical test sample error rate is 1.4% greater than (or 1.2 times)

the differentially-generated classifier's, with upner and lower standard deviations as shown. In half of the

tr,als the differentially-generated classifier does no better than the MSE-generated classifier; in three trials it

does worse (by as much as 1.9%); in the remaining trials it does better (by as much as 9.0%). On average,

the Kullback-Leibler (CE)-generated classifier's empirical test sample error rate is 1.9% greater than (or 1.3

times) the differentially-generated classifier's, with upper and lower standard deviations as shown. In one

quarter of the trials the differentially-generated classifier does no better than the CE-generated classifier; in

four trials it does worse (by as much as 5.2%); in the remaining trials it does better (by as much as 8. 1%).

We surmise that the differentially-generated model is not always better than its probabilistic counterparts

due to its high complexity, given the average training sample size of it = 62; even the "low-complexity"

classifier has a large number of parameters. As a result, all of the models exhibit high discriminant variance.

Since differential learning guarantees asymptoric efficiency only, it is not big enough for the differentially-
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Figure 9.9: Left: Test sample classification summaries for the 257-parameter logistic linear classifier
employing differential learning (A,%) and two forms of probabilistic learning (Ap). The summaries are
based on 55 independent trials. In each trial, training examples are drawn randomly from the set of 125
images with probability 2 ; those not chosen for training formed the test sample. Note that the CE-generated
logistic linear classifier is identically the logistic regression model for this classification task (see appendix F).
Right: The increase in the discriminant error of the two probabilistic models over the differentially-generated
model on a trial-by-trial basis.
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Figure 9.10: Test sample classification summaries for the low-complexity (257-parameter) differentially-
e lerated logistic linear classifier (far lc•t), K6anduca. Christy, and Ehman's 1901 2050-parameter MSE-
generated logistic linear classifier (middle left), and their best MSE-generated non-linear classifier (middf
right), a high-complexity multi-layer perceptron with 6 hidden units and 6,164 parameters. Note that the
differentially-generated model's average estimated discriminant error is the same as the high-complexity
probabilistic model's, but its estimated discriminant variance is one-half that of the high-complexity model
(cf. table 9.1). Each of ten human subjects performed one 2-fold cross validation trial (far right); the
differentially-gcnerated logistic linear classifier compares favorably with the humans.
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Estimated DBias, DVar, and MSDE

Hypothesis Learning Strategy

Class AA (CFM) Ap (MSE) Ap (CE)

55 trials, 256-pixel images

DBias 5.9 x 10-2 7.4 x l0-2 7.9 x 10-2

Logistic Linear 1
(257 parameters) DVar 7.7 x l0- 8.8 x I0- 91 x i0-

MSDE 4.3 x 10-1 6.3 x 10-" 7.2 x l0-'

ERE - 0.68 0.60

Manduca, Christy, and Ehman [90]: 24 trials, 1024-pixel imagesa

DBias - 8.4 x 10-2 -

Logistic Linear
(2050 parameters) DVar -- .2 x 10- -

MSDE - 8.3 x 10- -

DBias - 6.2 x 10-2 -

MLP
(6'64 parameters) DVar - 1.7 x l0-- -

MSDE - 5.6 x 10-3 -

ManducR, Christy, and Ehman [901: 10 human subjects, I trial each'

DBias - 7.5 x 10-2 -

Human
(10 subjects) DVar - 4.6 x 10-4 -

MSDE - 6.1 x 10-- -

Table 9.1: Estimated discriminant bias, discriminant variance, and MSDE for the 257-parameter logistic
linear classifiers generated by differential learning (AA ) via the CFM objective function and probabilistic
learning (Ap) via the MSE and CE objective functions. Estimates are based on 55 2-fold cross-validation
trials in which the AVN database is randomly partitioned into training and test samples, each containing
approximately 62 examples. Estimates are also shown for Manduca, Christy, and Ehman's 2050-parameter
logistic linear and 6164-parameter multi-layer perceptron (MLP) classifiers, both generated probabilistically
with the MSE objective function [90]. Those estimates are based on 24 2-fold cross validations trials; the
training/test sample partitions for their trials are different from ours. Finally, estimates are shown for 10
Human subjects (90]: each performed one 2-fold cross validation trial.

"OResults frm Manduca, Christy, and Ehman [901 used with permission.
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generated model to exhibit the lowest empirical error rate in all trials. By making the feature vector more

Gaussian-like, compressing the MRI images makes the logistic linear classifier a better approximation to the

proper parametric model of the feature vector. This also diminishes the relative efficiency of differential

learning vis-a-vis probabilistic learning. Nevertheless, the differentially-generated model is rarely worse, and

on average better than its probabilistically-generated counterparts. In short, its empirical MSDE is lower.

Table 9.1 shows that the differentially-generated 257-parameter logistic linear classifier's ERE (definition8.6,

page 255) is R [AA ,AP.MSE {,, ..... nK} ,G(e)] = 0.68 versus probabilistic learning via MSE and

ih [AA,APcE I In'...K ,G(e)] = 0.60 versus probabilistic learning via CE. The comparative

efficiency of differential learning stems mainly from its lower discriminant bias (5.9% for differential

learning, versus 7.4% (MSE) and 7.9% (CE) for probabilistic learning).6

Finally, we compare our results for these 55 trials with Manduca, Christy, and Ehman's results for 24 trials

in which the data is split into training and test samples as described above [90]. Figure 9.9 summarizes the

over-all comparison (results cannot be compared on a trial-by-trial basis, because we use different randomly

partitioned training/test samples). Manduca, Christy, and Ehman's logistic linear classifier uses the original

1024-pixel images and has an output for each class, so it has 2050 parameters. It learns probabilistically

with the MSE objective function and a conjugate gradient search algorithm. Its average empirical test sample

error rate7 (and, as a result, its empirical discriminant bias) is 8.4%; its empirical discriminant variance is

1.2 x 10-3. Their best multi-layer perceptron (MLP) classifier for the 50/50 training/test sample splits has

6 hidden units, two output units, and uses the original 1024-pixel images. As a result, the model has 6,164

parameters. Like its logistic linear counterpart, it learns probabilistically with the MSE objective function and

a conjugate gradient search algorithm. Its average empirical test sample error rate (and empirical discriminant

bias) is 6.2%; its empirical discriminant variance is 1.7 x l0-3. As described earlier, our logistic linear

classifier has 257 parameters; it learns with the CFM objective function and simple gradient ascent search

algorithm. Its average empirical test sample error rate (and empirical discriminant bias) is 5.9%; its empirical

discriminant variance is 7.7 x 10-4.

Compared with Manduca, Christy, and Ehman's linear classifier, our differentially-generated model

has a lower average empirical test sample error rate, and somewhat lower empirical discriminant variance.

Compared with Manduca, Christy, and Ehman's best non-linear classifier, our differentially-generated logistic

linear model has the same empirical test sample error rate (our 5.9% is not significantly better than their

6.2%) and approximately one half the discriminant variance. Virtually none of this empirical discriminant

variance difference is attributable to our larger number of trials (as the critical reader might suspect): we have

6 We assume an estimated Bayes error rate of , (Y'•as.,) = 0% for the AVN diagnosis task. The actual number is probably
non-zero since Manduca. Christy. and Ehman report that human radiology experts will not commit to a diagnosis on all 125 images in
the database 190).

7All statistics attributed to Manduca. Christy. and Ehman are either published in [901 or have been provided to the author by
Dr. Manduca via personal correspondence.
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looked at the empirical discriminant variance of several randomly selected 24-trial sub-sets of our 55 trials,

and it remains fairly steady about 8 x 10-4. Thus, the differentially-generated model combines the low error

rate of the complex probabilistic model and the consistency of the simple probabilistic model.

Manduca, Christy, and Ehman ran trials in which 10 humans not trained in radiology learned to diagnose

AVN from half of the 125 images; they were subsequently tested on the other half. The human subjects

had an average empirical test sample error rate (and empirical discriminant bias) of 7.5%; their discriminant

variance was 4.6 x 10-4. Thus, the low complexity logistic linear classifier employing differential learning

is, on average, at least as good as the human novice for this limited diagnosis task.

9.3 Summary

We find that a relatively simple logistic linear classifier learns to diagnose avascular necrosis of the femoral

head from a single low-resolution MRI image with an error rate of 5.9 (+4.9/-4.2)%.g The classifier is more

consistent than the best independently developed (probabilistic) model, which exhibits approximately twice

as much discriminant variance across independent test trials. In addition, the classifier's error rate compares

favorably with the 7.5% error rate of human novices who are provided with the same training and testing

data.
Learning to diagnose AVN presents an unavoidable tradeoff between discriminant bias and discriminant

variance. The simple classifier exhibits lower discriminant variance at the cost of increased discriminant bias

when complexity is reduced by compressing the original high-resolution MRI images into lower-resolution

ones; the details essential to a correct diagnosis are simply lost in the more difficult examples. This leads us

to acknowledge that there are learning tasks in which consistently low recognition error rates demand large

training samples. In such tasks, the key to consistently low error rates is in subtle details, which can be

gleaned only from a large training sample. This does not diminish the advantages of differential learning, but

it does show that a tradeoff between discriminant bias and variance is sometimes inevitable, no matter what

learning strategy is employed.

OThe tipper and lower bounds on this error rate are (more rigorous) 95% confidence bounds, rather than the standard deviations
quoted in section 9.2.
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Chapter 10

Remote Sensing with Differential
Learning'

Outline

We describe a series of remote sensing experiments conducted in collaboration with the Digital Mapping

Laboratory, School of Computer Science, Carnegie Mellon University. We use a modified RBF classifier

employing differential learning (DRBF) to interpret multi-spectral imagery from the Daedalus airborne

(remote sensing) scanner system. The interpretation procedure involves classifying individual image pixels,

which represent 64 square meters of earth surface material, into eleven categories of natural and man-made

materials - a preliminary step in automated map generation and various environmental analysis tasks.

The DRBF classifier has 132 parameters and exhibits a 29% error rate on the interpretation task. The

maximum-likelihood (probabilistic) model currently used for this task has 847 parameters and exhibits a 46%

error rate. Most of the DRBF's reduced error rate is attributable to its sub-sampling the training data during

learning; 12% of the reduction is attributable to differential learning/lower model complexity.

10.1 Introduction

The interpretation of remote sensing imagery is an integral part of a diverse set of earth sciences (e.g., map

generation, crop analysis, forestry, land use, assessing the environmental effects of airborne and water-borne

pollution, etc.). The imagery is obtained from satellite and airborne optical sensors, which are sensitive to

visible as well as near infrared and short-wave infrared light reflected from the earth's surface. The Digital

Mapping Laboratory, School of Computer Science, Carnegie Mellon University, is developing computer

systems for the automated interpretation of remote sensing imagery obtained from the Daedalus airborne

'We thank David McKeown and Stephen Ford of the Digital Mapping Laboratory for providing us with the multi-spectral imagery
for this task, introducing us to the business of remote sensing, and providing us with both the DRBF and maximum-likelihood classifier
test results.
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multi-spectral imaging system (e.g., 136]). Deadalus generates images comprising eleven spectral bands (ten

span the continuum from short-wave visible light to short-wave infrared light and one is in the thermal region

Ssee [36, fig. il). The image has a ground sample distance of approximately 8 meters, so a single pixel

represents a patch of earth with an area of about 64 meters squared.

As a preliminary step in generating maps by machine, each pixel in an image is classified according to

its "ground truth" class. Eleven classes are used in the current system: asphalt, concrete, coniferous tree,

deciduous tree, deep water, grass, shadow, shallow water, soil, tile, and turbid water. The pixel-by-pixel

interpretation is performed by a classifier that has previously learned examples of each ground truth class. The

feature vector X representing each pixel has eleven elements, corresponding to the eleven bandpass sensor

outputs of the Daedalus system. Both the test imagery and training pixels are taken from a 3000 x 700 pixel

(134 square kilometer) image of the Washington, D.C. metropolitan area.

The remote sensing community frequently uses Gaussian maximum-likelihood (ML) classifiers to

interpret multi-spectral imagery. In the case of the Daedalus scanner data, each of the ML model's eleven

discriminant functions has the form

fi(X) (0Igi(XI1) = (10.1)

E •i
j=1

where

f,(X) = exp 2(X _ .i)T E. (X _ pi) (10.2) 6( 1) lI l I I

and the ith mean pi and covariance matrix Ei are subsets of the over-all discriminator parameter vector 0.

Since there are C = I I discriminant functions for the eleven ground truth classes,2 the classifier has a total

of 11 (11 + 66) = 847 parameters3 (i.e., 0 E e = el ). The parameters of /i and Ej are estimated •

from the training sample by the method of maximum-likelihood (e.g., 128, sec. 6.51). The resulting classifier

therefore learns probabilistically a.j is the fully parametric counterpart to the partially parametric logistic

linear hypothesis class described in section 7.2.2. In the jargon of parametric statistical pattern recognition,

the fully-parametric maximum likelihood classifier is the normal-based linear discriminant analysis paradigm,

and its partially-parametric counterpart, the logistic linear classifier, is known as the logistic discriminant

analysis paradigm (e.g., 1911).

2 It is purely coincidental that the number of ground truth classes C and the feature vector dimensionality N are both II.
'The classifier comprises C = II discriminant functions, associated with the same number of ground truth classes. Each

discriminant function has I I parameters that correspond to the N = I I-dimensional class-conditional feature vector mean. The 0
covariance matrix has N 2 = 121 parameters, but it is symmetric. so it effectively has only N (N + i )/2 = 66 parameters. Therefore,
theclassifierhasatotalof II (11 + 66) = 847 parameters.
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We compare the maximum-likelihood classifier with a differentially-generated modified radial basis

function classifier (appendix K) having no hidden layer units. Each of the DRBF's eleven discriminant

functions has the form

Sg,(X Jo) = exp (X _ )T (X _ i (10.3)

where or. denotes the discriminant function's single variance parameter. As a result, the DRBF classifier has

a total of I I ( I I + I ) = 132 parameters (i.e., 0 E e = R.32 . fewer than one sixth as many as the

maximum-likelihood model.

10.2 Training Data

The single remote sensing training sample comprises 10,616 pixels of the eleven ground-truth classes, taken

from the 3000 x 700 pixel image of the Washington, D.C. area described earlier. Although the four

small test sites described in section 10.3 are taken from the same over-all image, all of the training data

is from different locations in the image, so the test and training samples are disjoint. Consequently, this

is a site-dependent classification task (if the training data were taken from, say, Atlanta, Georgia, and the

test data were taken from Washington, D.C., the task would be truly site-independent). Table 10.1 shows

the number of example pixels ni for each ground truth class Wi (i = 1 .... ,C) in the training sample.

The maximum likelihood classifier learns simply by computing the maximum-likelihood estimates of the

eleven discriminant functions' class-conditional means and covariances based on this sample. By (10.1)

and (10.2), the maximum-likelihood classifier implicitly assumes that all class prior probabilities are equal.

The DRBF classifier learns differentially by maximizing the CFM objective function with respect to 0

over the set of all training examples; this is done by an iterative search that employs gradient ascent and

the backpropagation algorithm (e.g., [119, 120]), altered for use with the modified RBF non-linearities of

(10.3). In order to speed learning convergence, the DRBF classifier's parameters are initialized as described

on page 211: the class-conditional mean vectors are initialized to their corresponding class-conditional

training sample average, while the class-conditional variance parameters are initialized to their corresponding

class-conditional sample variances.

A differential learning epoch comprises one iteration of the learning algorithm for each example in

the training sample. Iterative statistical learning procedures such as differential learning require that the

empirical class prior probabilities of the training sample match those of the test sample. At the same

time, a large training sample size for each ground-truth class is desirable, since it better characterizes the

class-conditional probability density function (pdf). Because the ground-truth classes do not all have the

same prior probabilities in the Washington, D.C. area, the DRBF does not attempt to learn every training

example each epoch (see table 10. 1). Instead it learns a fraction of each ground-truth class in a given epoch.
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Training Sample Sizes (ni)

DRBF's
Learning

Probability
Ground Truth Class ni PA

asphalt 1000 0.5
concrete 1000 1.0

coniferous tree 616 0.04
deciduous tree 1000 1.0

deep water 1000 1.0 6
grass 1000 1.0

shadow 1000 1.0
shallow water 1000 0.3

soil 1000 0.01
tile 1000 0.01 4

turbid water 1000 1.0

Table 10.1: The training sample sizes ni (i = I ... ,C) for both the maximum-likelihood and DRBF
classifiers. The far-right column applies to the DRBF classifier only. In any given epoch, the DRBF randomly
selects with probability pi each of the ni training examples of class Wj: the examples selected in a given
epoch are learned during that epoch; all other examples are ignored in that epoch. This form of randomly
sub-sampling the training data each epoch effectively alters the empirical class prior probabilities of the
training sample so that they are more representative of their true underlying values.

At the beginning of each epoch the DRBF randomly selects with probability Pi (or ignores with probability

1 - p,) each of the n, training examples of class Wi: the examples selected in a given epoch are learned

during that epoch; all other examples are ignored in that epoch. This form of randomly sub-sampling the

training data each epoch effectively alters the empirical class prior probabilities of the training sample so

that they are more representative of their true underlying values. That is, the probabilities {pi ... pc I in

table 10. 1 have been chosen so that they approximate the prior probabilities of the ground truth classes in the

Washington, D.C. area (i.e., {Pw(Wt) .... Pw(Wc)} ) thus:

pAnl " Piw() (10.4)

S(pini)
1=-i

Reference [351 shows that this technique of sub-sampling the training sample each learning epoch reduces

the DRBF's empirical test sample error rate by about 15%. Additionally, it accounts for a significant fraction

of the test differences between the DRBF and ML classifiers (see section 10.3).
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Figure 10.1: Top Left: Panchromatic image of the civil site (1.2 meter resolution). Top Right: Composite
of the multi-spectral data for the civill site (8 meter resolution), which the classifiers interpret.

10.3 Experimental Results

Figures 10.1 - 10.6 pertain to four sites in downtown Washington, D.C., on which we have tested the DRBF

and maximum-likelihood classifiers. Figure 10.1 shows the vicinity of the Civil Service and Department

of the Interior buildings. The image on the left is a high-resolution panchromatic image of the site; the

image on the right is a lower resolution composite of the 11 -band multi-spectral image that the classifiers

interpret. 4 There is no explicit relationship between the colors in the multi-spectral images of figure 10.2

(right) and those in the classification maps of figure 10.2. The three images in figure 10.2 depict the ground

truth for the site (middle - generated by a human using an interactive image classification tool) and the

DRBF (top) and maximum-likelihood (bottom) classifiers' interpretations of the multi-spectral image in

figure 10.1. Classification errors occur at pixels for which the color of a classifier's interpretation differs

from the ground truth image color. The color legend to the right in figure 10.2 explains the color-scheme

used in the ground-truth and classification maps.

Tables 10.2 and 10.3 summarize the DRBF classifier's test results at the civill site, and tables 10.4 and

10.5 summarize the maximum-likelihood classifier's test results. Tables 10.2 and 10.4 match the ground

truth class names with their class labels (W.I , .... LO,1 1 ),1 and they show the top ten confusions made by the

4All of the panchromatic images were taken with a resolution of 1.2 meters per pixel side (i.e., a pixel represents 1.44 square meters
of surface area); all of the multi-spectral images were taken approximately seven years later at 8 meters/pixel side (i.e., a pixel represents
64 square meters of surface area).

5These label/name lists are give in both tables for quick reference.
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Figure 10.2: Top: The DRBF classifier's interpretation of the civill site. Middle The ground truth for the
civil l site. Bottom The maximum-likelihood (ML) classifier's interpretation of the civil l site.
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civilI Ground Truth Classes DRBF Top Ten Confusions

W01  asphalt True Class Misclassified as Count Percent

L42  concrete deciduous tree grass 800 27.3

LW3 , deciduous tree deciduous tree asphalt 570 19.5

U)4  grass concrete asphalt 548 18.8

W5  shadow deciduous tree shadow 284 9.7

(A 6  tile asphalt concrete 244 5.7

W7  coniferous tree asphalt shadow 180 4.2

*W8 deep water shadow asphalt 163 20.1

W9  shallow water grass deciduous tree 156 13.4

WO1o soil grass asphalt 144 12.4

Wit I turbid water concrete grass 45 1.5

Table 10.2: Left: Class labels assigned to the I I ground truth classes. Right: Top ten confusions made by
the DRBF classifier over the civill site.

DRBF Ground Truth Class Confusion Matrix
Detected
Class True Class

False

W A 7I W LO (A) W() W Total Correc

W, m 548 570 144 163 33 0 0 0 0 0 5267 72.3 27.7

U_2 244 2268 25 24 4 5 0 0 0 0 0 2570 88.2 11.8

____3 5 0 1197 156 I 0 0 0 0 0 0 1359 88.1 11.9

Wg4 16 45 8001 81S 0 I 0 0 0 0 0 1677 48.6 51.4

_05 180 12 284 17 162i 0 0 0 0 0 0 1118 55.9 44.1

___6 38 29 7 0 6 _'a 0 0 0 0 0 104 2.!.1 76.9

0.)7  0 3 43 5 I 0 0 0 0 0 52 0.0 100.0

___g 4 0 1 0 3 0 0 no 0 0 0 8 0.0 100.0

W9 0 0 0 0 I 0 0 0 0 0 I 0.0 100.0

LO0 0 1 0 0 0 0 0 0 0 0 I 0.0 100.0

_J-I 9 9 0 0 5 0 0 0 0 0 7- 0.0 100.0

Total 4303 2915 2927 1161 809 63I 0 0 0 0 0 1218O 71.7 28-31
% Corret 8.1 77.1 40.9 ?20.2 177.3 31 71.7
False
Negtive
Rate 11.5 22.2 59.5 29.8 22.7 61.9 28.3

Table 10.3: Confusion matrix for the DRBF classifier over the civill site.
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civill Ground Truth Classes ML Top Ten Confusions

W, asphalt True Class Misclassified as Count J Percent

Lw 2  concrete deciduous tree grass 893 30.5

W., deciduous tree asphalt tile 876 20.3

W)4  grass deciduous tree coniferous tree 831 28.4

Ws3 shadow deciduous tree soil 766 26.2

W6  tile concrete soil 634 21.7

W.7 coniferous tree asphalt soil 480 11.1

W)S deep water grass soil 330 28.4

W9 shallow water asphalt concrete 318 7.4

W10 soil concrete tile 283 9.7

W11  turbid water concrete asphalt 178 6.1

Table 10.4: Left: Class labels assigned to the I I ground truth classes. Right: Top ten confusions made by
the maximum-likelihood (ML) classifier over the civill site.

ML Ground Truth Class Confusion Matrix
Detected
Class True Class

False
) I W 2  M. W4  W5 W 6  .7 Ws W9 LOW Wit Total C Rt_

01  1 178 12 0 67 0 0 0 0 0 0 27619.3

(A 2  318 1808 2 0 5 I 0 0 0 0 0 2134 84.7 15.3

W., 0 o 25 II 2 0 0 0 0 0 0 265 95.1 4.9

U) 4  6 0 893 739 0 0 0 0 0 0 0 1638 451 549

W119 9 43 0 FM0 0 0 0 0 0 0 721 763 217

W 6  876 283 128 II 152 '491 0 0 0 0 0 1499 3. 967

WJ"7  2 3 831 70 I5 0 F 0 0 0 0 921 00 1000

Los 0 0 0 o 0 0 0 ol 0 0 0,
Lg0 0 0 0 14 .0 0 0 O[ 0 0 14 0.0 200.0

W_0 480 6.4 766 330 4 13 0 0 0 j] 0 2227 0.0 10.0

WIll 0 0 0 0 0 0 0 0 0 0o [] -0

Total 4305 2915 2927 1161 809 63 0 0 0 0 0 12130 43. 51.
% Correc 58.72 62.0 8.6 63.7 78. 77.8 48.5
False
Nqwive
Rate 41.8 38.0 91.4 36.3 32.0 22.2 52.5

Table 10.5: Confusion matrix for the maximum-likelihood (ML) classifier over the civill site.
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Figure 10.3: Top Left: Panchromatic image of the gaol site (1.2 meter resolution). Top Right: Composite
of the multi-spectral data for the gaol site (8 meter resolution), which the classifiers interpiet.

classifier. The percent confused is equal to the number in the "count" column divided by the total number

of ground truth examples occurring in the test sample (image). Tables 10.3 and 10.5 are confusion matrices:

they list the ground truth example totals at the bottom, in the "total" row. The class labels across the top of

the confusion matrices indicate the actual (or true) ground uuth class, and the labels in the left-most column

denote the class detected by the classifier. The diagonal elements of the confusion matrix show the number

of ground truth examples correctly classified or detected by the classifier; the off-diagonal elements show the

number of examples misclassified (i.e., incorrectly detected as -xamples of another class). As an example,

the bottom entry of table 10.3 in the W1 column indicates the percentage of asphalt pixels that the DRBF

misclassifies as some other ground truth class. The right-most column of the table's WO1 row indicates what

percentage of pixels classified as asphalt actually represent some other ground truth class.

The two bold-face numbers in the lower right comer of tables 10.3 and 10.5 show what percentage of

the image pixels are correctly classified and what percentage are misclassified by the classifier. Table 10.3

shows that the DRBF classifier exhibits a 28 3 (+/- 0.8)% empirical error rac on the clvil site; table 10.5

shows that the maximum-likelihood classifier exhibits a 51 5 (+/- 0.9)% empirical error rate.6

6We remind the reader that empirical test sample error rates include 95% confidence intervals: these are estimated under the
assumption that the error rate is binomially distributed 1531. Please see section 8.2 for details.
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Figure 10.4: Top: The DRBF classifier's interpretation if the gaol site. Middle The ground truth for the
gaol site. Bottom The maximum-likelihood (ML) classifier's interpretation of the gaol site.
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g-vol. G;round Truti Classes D)R11F Top Ten Confusions

True Class Misclassified as Count f Percent
CC corncretc concrete asphalt 1645 39.2 ......

C03 deciduous tree deciduous tree asphalt 569 44.1

W4  grass asphalt concrete 386 6.1

W.s shadow deciduous tree grass 365 28.3

W 6  soil shadow asphalt 349 27.8

U 7  tile tile asphalt 273 77.1

W., coniferous tree asphalt shadow 182 2.9

W, deep water deciduous tree shadow 97 7.5

Ld ,) shallow water concrete grass 52 1.2

W•, turbid water shadow deep water 35 2.8

Table 10.6: Left: Class labels assigned to the I I ground truth classes. Right: Top ten confusions made by
the DRBF classifier over the gaol site.

DRBF Ground Truth Class Confusion Matrix
Detlcied
c.l1s True Class

w" . t I wFalseo,1 02 LL3 W34 WtS W, 0? 3 (s) , 9 Wt ID W Total Com• LR"eo

0,1 5719 1645 569 35 .49 0 273 0 0 0 0 1 590 66.6 33.4

W)2  386 2F6 12 5 I 0 9 0 0 0 0 2879 15.7 14.3

W 0 0 231 33 1 0 0 0 0 0 0 271 36.0 14.0

___ 52 M65 4 ) 0 0 0 0 0 0 917 513. 46.5

.,t 182 9 97 2 824 0 4 0 0 0 0 tIll 73.7 26.3

U-6 0 0 0 o 0 no 0 0 0 0 0 0

W7 t12 14 1 0 0 0 [--1 0 0 0 0 95 71.6 28.4

U-s 0 I 13. 2 0 0 0 Ol 0 0 0 16 0.0 100.0

W9 23 0 0 0 35 0 0 o 0 0 51o 0.0 100.0

(A)m 12 0 0 0 28 0 0 0 0 1F 0 40 00 100,0

I. 12 6 0 0 12 0 0 0 0 0 n] 30 0.0 100.0
Total 6355 419.3 1290 561 1254 0 354 0 0 0 0 141014 69.9 30.1
'%, c•er .0 5.-1 I11.1 86.4 63.7 19.2 -_ . 9
Nepa4Ive

10.0 1 Al 7, 81.9 13.6 M.34 . - . 3

Table 10,7: Confusion matrix for the DRBF classifier over the gaol site.
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gaol Ground Truth Classes ML Top Ten Confusions

W,1 asphalt True Class Misclassified as [Count I Percent

W2  concrete concrete asphalt 965 23.0

W3 deciduous tree asphalt concrete 733 11.5

W4  grass asphalt tile 615 9.7

W0s shadow deciduous tree soil 545 42.2

L06  soil shadow asphalt 393 31.3

.)7 tile deciduous tree grass 346 26.8

Ws coniferous tree concrete soil 298 7.1

W9 deep water concrete tile 246 5.9

Oo10  shallow water asphalt soil 234 3.7

W1nl turbid water deciduous tree coniferous tree 202 15.7

Table 10.8: Left: Class labels assigned to the I I ground truth classes. Right: Top ten confusions made by
the maximum-likelihood (ML) classifier over the gaol site.

ML Ground Truth Class Confusion Matrix
Detected
Class True Class

False

___ _ _ __ __Correc RatectoW-J U)2- )IW,2 1 U-tJ4 Wt,/ U,,,J6(/)7 (''LU W""9 I U]no (Wnl Total 1o ec

463I01 965 27 0 393 0 8 0 0 0 0 6043 76.9 23.1

L0L2  733.126671 0 0 3 0 I 0 0 0 0 3404 78.3 21.7

CLO3  0 o E o 0 0 0 0 0 0 0 13 100.0 0.0

W4 3 0 346 '88 0 0 0 0 0 0 0 737 52.6 47.4

(A)5 116 17 15 0 M69 0 2 0 0 0 0 789 81.0 19.0

W)6  234 298 545 162 4 n] 3 0 0 0 0 1246 0.0 100.0

,,7 615 246 142 1 53 0 oJr 0 0 0 0 1397 24.3 75.7 0

LOS 3 0 202 17 27 0 0 0 0 0 249 0.0 100.0

U0 0 0 0 0 0 0 0 [] 0 0 0 -

____ ) 0 0 0 135 0 0 0 0 J ] 0 136 0.0 100.0

(A), 0 0 0 0 0 0 0 0 0 0 o 0-

Total 6.355 4193 1290 568 1254 0 354 0 0 0 0 14014 62.1 1 31.91
,7..2 63.6 1.0 1 68.3 51.0 0 62I

Rate 26.8 36.4 99.0 31.7 49.0 1 4.0 37.9

Table 10.9: Confusion matrix for the maximum-likelihood (ML) classifier over the gaol site.
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DRBF error rate reduction: The error rate reduction realized by employing the DRBF classifier in lieu

of the maximum-likelihood (ML) classifier is S0q)MIM - E(1)nDRE, where -E(u)ML denotes the number of test

sample errors made by the maxinmum-likelihood classifier and E-(?/)DRBF denotes the number made by the

DRBF classifier.

The DRBF classifier therefore reduces the maximum-likelihood classifier's empirical error rate by 45% at

the civil site. A review of figure 10.2 and tables 10.2 - 10.5 shows that the maximum-likelihood classifier

has high false detection rates for soil, tile, and coniferous trees. The DRBF classifier frequently fails to detect

tile. Both classifiers misclassify deciduous trees as grass roughly 30% of the time.

Figures 10.3 and 10.4 and tables 10.6 - 10.9 compare the two classifiers for the gaol site, which

includes the General Accounting Office building. Table 10.7 shows that the DRBF classifier exhibits a

30.1 (+/- 0.8)% empirical error rate at the gaol site; table 10.9 shows that the the maximum-likelihood

classifier exhibits a 37.9 (+/- 0.8)% empirical error rate. The DRBFclassifier therefore reduces the maximum-

likelihood classifier's empirical errorrate by 21% at the gaol site. A review of figure 10.4 and tables 10.6 -

10.9 shows that the classifiers exhibit the same general trends over the gaol site as they do over the civill

site, with a few notable exceptions. The DRBF's insensitivity to tile is more evident, owing to the higher

prior probability of that ground truth class at the gaol site. More than half of the DRBF errors occur when it

confuses asphalt and concrete (we attribute this phenomenon to the large number of parking lots with vehicles

present at the site, the surfaces of which exhibit both asphalt and concrete-like spectral characteristics). As a

result, the disparity between the two classifiers' empirical error rates is considerably lower at the gaol site.

Figures 10.5 and 10.6 compare the classifiers over the White House (whousel) and the Federal Bureau

of Engraving ( engravel ), respectively. Human-generated ground truth are not shown for these sites, and we

omit a detailed statistical comparison of the classifiers in the interest of brevity. A visual comparison indicates

that the general trends exhibited over the civill and gaol sites are manifest at the whousel and engravel

sites as well. This is confirmed by a comparison of the two classifiers' empirical error rates over these two

sites, which are shown in table 10. 10. The table lists the error rates of both classifiers on all four sites, along

with 95% confidence bounds computed as described in section 8.2 and [621. The DRBF classifier exhibits

a 28.4 (+/-0.8)% empirical error rate at the whousel site; the maximum-likelihood classifier exhibits

a 51.6 (+/-0.9)% empirical error rate. The DRBF classifier therefore reduces the maximum-likelihood

classifier's empirical error rate by 45% at the whousel site. The DRBF classifier exhibits a 29.6 (+/- 0.7)%

empirical error rate at the engravel site; the maximum-likelihood classifier exhibits a 44.7 (+/-0.8)%

empirical error rate. The DRBF classifier therefore reduces the maximum-likelihood classifier's empirical

error rate by 34% at the engravel site. Based on the combined test results from all four sites, the

DRBF classifier exhibits a 29.2 (+/- 0.4)% empirical error rate; the maximum likelihood classifier exhibits
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Estimated Error Rates

Maximum Percent Error Rate
Test Sample Likelihood Reduction, DRBF versus

Site Size 1j Classifier DRBF ML

civill 12,180 51.5 (+/- 0.9)% 28.3 (+/- 0.8)% 45%

gaol 14,014 37.9 (+0- 0.8)% 30.1 (+/- 0.8)% 21%

whousel 12.155 51.6(+/- 0.9)% 28.4(+/- 0.8)% 45%

engravel 15,704 44.7 (+/- 0.8)% 29.6 (+1- 0.7)% 34%

all sites 54,053 46.1 (+1- 0.4)% 29.2 (+1- 0.4)% 37%

Table 10.10: A summary of the empirical test sample error rates for both the maximum-likelihood and DRBF
classifiers. The far-right column shows the percent reduction in error rate realized by employing the DRBF
in lieu of the maximum-likelihood classifier.

a 46.1 (+/- 0.4)% empirical error rate. The DRBF classifier therefore reduces the maximum-likelihood

classifier's empirical error rate by 37% over all four sites.

10.3.1 Interpretation of Test Results

The reduced complexity and differential learning strategy of the DRBF classifier account for part of the

37% improvement over the maximum-likelihood classifier, but they do not account for all of it. Recall

from section 10.2 that the DRBF classifier sub-samples the training data when learning - a procedure

that effectively alters the ground truth class prior probabilities and reduces the DRBF's error rate by 15%.

For this reason, we suspect that more than half of the DRBF's improvement over the maximum-likelihood

classifier has nothing to do with differential learning and the rduced classifier complexity it allows. Indeed,

if the DRBF classifier learns without sub-sampling the training data, its empirical error rate over the civill

and gaol sites increases to 40.4 (+1- 0.6)%.7 Thus, the DRBF classifier without sub-sampled training data

reduces the maximum-likelihood classifier's empirical error rate by only 12% - a statistically significant

but not substantial amount. Put another way, it is reasonable to believe that incorporating estimates of

the ground-truth class prior probabilities into the maximum-likelihood classifier via (10. 1) - altering that

equation so that it is an expression of Bayes' rule - would reduce the maximum-likelihood classifier's error

rate by about 25%, leaving only a 12% advantage to the DRBF classifier.

These differences notwithstanding, we suspect that the DRBF's 29% error rate is close to the (minimum)

Bayes error rate for X, an Il -element vector describing a single image pixel. The human expert generates

ground truth for each site by looking at the over-all image; thus, (s)he exploits contextual information (e.g.,

the appearance of neighboring pixels) to which the DRBF does not have access. Given such information

"7Comperable results for the whmuel and engrovel sites have not been compiled.
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Figure 10.5: Top Left: Panchromatic image of the whousel site (1.2 meter resolution). Top Right:
Composite of the multi-spectral data for the whousel site (8 meter resolution), which the classifiers
interpret. Bottom Left: The maximum-likelihood classifier's interpretation of the whousel site. Bottom
Right: The DRBF classifier's interpretation of the whousel site.
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Figure 10A6 Top Left: Panchromatic image of the engravel site (1.2 meter resolution). Top Right:
Composite of the multi-spectral data for the engravel site (8 meter resolution), which the classifiers
interpret. Bottom Loeft: The maximum-likelihood classifier's interpretation of the engiravel site. Bottom
Right: The DRBF classifier's interpretation of the engravel site.
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in the form of a feature vector that includes the pixel of interest and its surrounding neighbors, the DRBF

classifier would probably exhibit a significantly lower error rate. Owing to the geometric increase in the

number of parameters a comparable maximum-likelihood model would require for the expanded feature

vector,8 we doubt such a model would exhibit a lower error rate.

10.4 Summary

We have used a DRBF classifier with 132 parameters to interpret multi-spectral images of the Washing-

ton, D.C. area, pixel-by-pixel. The DRBF exhibits a 29% error rate, 37% lower than the 46% error rate

exhibited by the 847-parameter maximum-likelihood (probabilistic) classifier currently used for this task.

The DRBF classifier's reduced complexity and differential learning strategy account for approximately 12%

of the improvement over the maximum-likelihood model; the remaining 25% of the improvement is due to

the DRBF classifier's method of sub-sampling the training data during learning. This sub-sampling allows

the DRBF classifier to adjust the training sample's empirical class prior probabilities so that they match those

of the test sample, thereby ensuring that the training sample is representative of the test sample.

0

IThe number of DRBF classifier parameters increases linearly with N, the feature vector dimensionality. The number of
maximum-likelihood claisifier parameters increases as N2 dooming the paradigm to Bellman's curse of dimensionality [13].
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Chapter 11

Conclusions

11.1 Scientific Contributions

We began this text by stating that the research herein is motivated by by three convictions: the first is that it

is not necessary to estimate probabilities in order to perform robust statistical pattern recognition; the second

is that there are many real-world pattern recognition tasks for which a proper parametric model either does

not exist or cannot be determined; the third is that the simplest model of the data is generally the best one

Occam's razor. These convictions motivated our research and serve as the backdrop to what we believe is

our principal contribution to the fields of machine learning and statistical pattern recognition:

differential learning - a discriminative learning strategy for differentiable supervised classi-

fiers that guarantees the best-generalizing classifier allowed by the choice of hypothesis class,

whatever that choice is; the guarantee always holds for large training sample sizes and it usually

holds (i.e., it holds for all improper parametric models) when the training sample size is small.

Lesser contributions - Chapter-by-chapter, the lesser contributions are as follows:

* Defining two strategies by which differentiable supervised classifiers can learn: probabilistic and

differential (chapter 2).

* Defining two fundamental forms of the Bayesian discriminant function that correspond to the

probabilistic and differential learning strategies (chapter 2).

* Developing an estimation-theoretic view of generalization (chapter 3):

- Defining the classifier as an estimator of the Bayes-optimal classifier.

-- Defining estimation-theoretic measures of generalization:

* Discriminant bias

* Discriminant variance

303
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* Mean-squared discriminant error (MSDE)

-- Defining the efficient and relatively efficient classifiers.

-- Defining the efficient and asymptotically efficient learning strategies.

"* Proving that differential learning is accomplished by maximizing the CFM objective function (chap-

ter 2).

"* Proving that differential learning is asymptotically efficient (chapter 3).

"* Proving that differential learning requires the minimum-complexity hypothesis class necessary for

Bayesian discrimination (chapters 3 and 6).

"* Proving that minimizing a classifier's functional error does not equate to minimizing its error rate; that

is, error measures are non-monotonic (chapters 3 and 5).

"* Proving that probabilistic learning is accomplished by minimizing error measure objective functions

(chapter 2).1

"* Proving that probabilistic learning is inefficient (chapter 3).

"* Defining proper and improper parametric models (chapter 3).

"* Sketching and illustrating the proof that probabilistically-generated proper parametric models can be

more efficient than their differentially-generated counterparts for small training sample sizes (chapters

3 and 4).

"* Developing the classification figure-of-merit (CFM) objective function [551 and deriving a synthetic

form of it that engenders reasonably fast learning (chapter 5, and appendix D).

"* Developing distribution-dependent bounds on the training sample size requirements for good general-

ization via differential and probabilistic learning ([51 ] and chapter 6).

"* Showing that the minimum-complexity requirements of differential learning are consistent with the

tenets of VC theory (section 3.5).

11.2 Philosphical Implications of Differential Learning

There are at least six "philosophical" implications of differential learning that warrant discussion; the most

strenuous objections to differential learning that we have fielded to date pertain to them.

I We remind the reader that our claim of originality here is restricted to our definition of and proofs relating to the general error 0
measure, a significant fraction of which is due to Barak Pearlmutter. Proofs pertaining to specific error measures precede our work, and
we make no claim to them.

0=
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Estimating probabilities - Differential learning seeks only to learn the identity of the most likely class

of the feature vector over its domain - a discriminative strategy that equates to learning the Bayes-optimal

class boundaries on the feature vector's domain. This learning objective is substantially less rigorous than

that of probabilistic learning, which seeks to learn all the a posteriori class probabilities of the feature vector

over its domain. Indeed, the lower degree of rigor accounts in part for the efficiency of differential learning.

By accepting differential learning we abandon the goal of estimating probabilities. This is heresy to some

traditionalists. In fairness to them, we acknowledge that there are statistical pattern recognition tasks for

which probabilistic estimates are essential. If, for example, we are going to caution a potential coronary

bypass surgery candidate against an operation because our computer diagnostic system indicates that she will

not survive the procedure, then we might require a firm probabilistic estimate of mortality (both with and

without surgery) on which to base the ultimate decision to operate or not. Hidden Markov Models (HMMs)

and Markov Random Fields, which are used to recognize patterns that evolve over space and/or time, rely

heavily on robust probabilistic estimates. Since differential learning does not generate these, it is not likely

that it can work well in hybrid systems that use neural network classifiers to estimate the probabilities for

HMM systems (e.g., [1 26]).

If we need a probabilistic estimate, we are compelled to allocate the resources necessary for a robust

estimate. On the basis of section 6.4, this might require extremely large training sample sizes (depending on

whether or not our parametric model is a good approximation to the proper one). If the model is approximately

proper and/or the data can be collected, then we need only expend the time, money, and effort necessary

for the collection. If, on the other hand, the model is improper and there is no plausible way to obtain the

data, then we must face the fact that reliable probabilistic estimates simply cannot be made. Under these

constraints, classification will be more reliable if we abandon the untenable goal of estimating probabilities

and employ differential learning.

Ultimately, we should consider whetheror not probabilistic estimates are essential to our objectives in the

context of whether or not our parametric model is approximately proper. The decision science literature is full

of studies showi:ng that humans - indeed human experts - are remarkably bad at estimating probabilities

and applying them consistently to their process of decision making (see for example [69, 27]). Nevertheless,

we revere our human pattern recognition capabilities and have great confidence in their ability to guide us to

rational decisions. This paradox might be explained by the differences between probabilistic and differential

learning, although we make no claim of biological plausibility. We leave it to the reader to decide when

probabilistic learning is imperative; absent this imperative and/or the knowledge of a proper parametric

model of the data, we suggest the differential learning strategy.

How Easy is It to Approximate the Proper Parametric Model - We have sketched the proof that

probabilistic learning generates the efficient classifier when the hypothesis class is a proper parametric model
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of the data (section 3.6); the experiments of sections 4.2 and 8.5.4 confirm the phenomenon. In all other

cases - that is, when the hypothesis class is an improper parametric model of the data - differential

learning generates the relatively efficient classifier for both small and large training sample sizes. Thus,

the choice between probabilistic and differential learning hinges on whether or not the hypothesis class is

a proper parametric model of the feature vector. We remind the reader that if the proper parametric model

exists - indeed it does not always exist - it is unique. In practice, however, we need only approximate

it in order to obtain efficient probabilistic learning. The wide acceptance and use of logistic regression

models and multi-layer perceptrons follows from their use of logistic non-linearities. Many feature vectors

have well-separated, unimodal class-conditional densities; consequently, the logistic function allows a good

approximation to the feature vector's a posteriori class probabilities - the model is approximately proper.

Thus, the real question that should dclde between probabilistic and differential learning is whether this

reasonable approximation holds in a given case. We encourage the reader to ask this question by rigorous

hypothesis testing, and -ct on the answer as appropriate.

The bias/variance tradeoff - As discussed in chapter 3. there is a difference between a classifier's

finctional bias and variance and its discriminant bias and variance. In the context of proper parametric

models a third type of parametric bias and variance arises, which is closely related to its functional

counterpart. Assuming that the model is believed to be proper (regardless of whether or not it really is),

differential learning trades an increase in the classifier's parametric and functional bias for a decrease in both

its discriminant bias and variance. Whether or not the trade is a good one from a classification perspective

depends upon whether or not the parametric model is indeed proper. If it is, the trade is not a good one for

small training sample sizes because probabilistic learning can probably generate a more efficient classifier

with lower parametric and functional bias/variance as well. If it is not, the trade is a good one for both

small and large training sample sizes because differential learning generates the relatively efficient classfier,

whereas probabilistic learning generates a distinctly inefficient classifier.

Interpreting nodels - One of the many criticisms leveled against neural network classifiers is that,

owing to their complexity, they do not reveal readily discernible relationships between the feature vector and

the Bayes-optimal classification. Indeed, part of the appeal of parametric models (here we use the term in the

traditional sense) is their simple structure, which lends itself to straightforward interpretation. Our experience

is that physicians, for example, prefer a bad model that is readily interpretable to a good one that is not. From

an engineering perspective this seems silly, but from a medical perspective - people's lives may depend on

the classifier's discrimination - the decision favors certainty over uncertainty; this is a rational, defensible

preference. By implicitly assuming that the parametric model of the data is improper, differential learning

adds one more layer of uncertainty in the eyes of some potential users. We must therefore develop better

theories and tools for understanding these models (see section 11.3) if we are to eliminate the uncertainty and

S
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exploit the superior generalization afforded by differential learning.

Representation - Finally, the renaissance of connectionism has brought the issue of representation to

the fore. In our terminology, the choice of hypothesis class is the choice of representation. This choice and

0 how it is made are topics of active debate. Tutere seems to be strong consensus that a good representation of

the data, carefully engineered prior to learning, is the best assurance of good generalization. As we state in

chapter 8, we dispute this conclusion and offer both our theoretical and experimental results as evidence that

representation is not such an important issue. 2 Complexity issues are undeniably important, as Vapnik has

clearly proven, but the specific functional basis with which the data is modeled is secondary when differential

learning is employed. As long as the hypothesis class has sufficient functional complexity to approximate the

Bayes-optimal class boundaries on feature vector space, the representation is adequate. This is obviously not

the case with probabilistic learning, since it seeks to model the feature vector's a posteriori class probabilities

in addition to its class boundaries - a function approximation task for which representation is a key issue.

Weighting Risks - Not all classification tasks weight classifications equally. The magnetic resonance

image (MRI) interpretation task of chapter 9 is a good example. The risk of failing to detect avascular

necrosis (AVN) should be weighted more heavily than the risk of a "false positive". Different weightings are

incorporated into probabilistic models by a simple application of Bayes rule after the classifier has learned the

training sample. Although this same procedure can be used with differentially generated classifiers, it is not

theoretically defensible, since the classifier's outputs do not represent probabilistic estimates. Altering the

empirical class prior probabilities of the training sample to account for the Bayesian risk formalism is a more

defensible approach with differential learning; equivalently, the step size of the iterative search algorithm

used for differential learning can be weighted in proportion to the risk associated with each class. Both of

these techniques can be shown to implement the Bayesian risk weighting formalism.

11.3 Future Research

We view the learning process as one in which the learner must

"* choose a strategy for learning the training data with a model,

"• choose a means of implementing the learning strategy (i.e. a specific algorithm that implements the

strategy),

"* acquire the training data and choose the manner in which that data is represented,
2 We do not make this statement without regard to the effect of representation on the learning rate. The choice of representation can

mean the difference between reasonably fast learning and unreasonably slow learning, so it is an important choice. Indeed, the end of
section 55.1 implies that differential learning frees us to choose models that yield Bayesian discrimination and learn reasonably fast
over those that might be better probabilistic representations of the data but take unreasonably long to learn.
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Figure dvl.p : A simplified view of efficient autonomous learning.

"O choose a hypothesis class (i.e., a limited set of choices from which the classifier will be generated),

"t allocate the storage and computational r alizeces necessary for the data, the raypothesis class, and the

learning strategy as implemented,

"• leara, and

" assess the resulting model in terms of alternative plausible models.

Figure csi c illustrates this view of learning. Our research to date has focussed on proving that differential

learning is an optimal strategy, ina arant the best generalization allowed by the choice of hypothesis
class. We have also developed a computationally efficient implementation of differential learning. Given

Occam's razor, the efficiency and minimum-complexity requirements of differential learning are significant:
the simplest model that explains the data will generalize best, given a finite number of training examples, and

this model can in 1-rinciple be generateu with differential learning.

Since Kolmogorov's theorem 1771 can be interpreted as a proof that the minimum-complexity Bayes-

optimal classifier can be determined only by exhaustive search, we are faced with the challenge of

differentially learning a reasonable approximation to that classifier and comparing it with other plausible

models. Since the classifier's complexity is directly related to the training data's form (i.e., the specific

form of the feature vector), the challenge of finding a reasonable approximation to the minimum-complexity

classifier involves choosing a form for the data and generating a model that explains the data. In ti'm, the

process of choosing a data form and generating a model -an be viewed as an iterative search on the joint S
space of all possible data forms and models. In our research to date, we have chosen the data form and the
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hypothesis class (i.e., the set of allowed models) by a procedure that requires substantial human oversight.

The training data form has been fixed prior to learning. Likewise, hypothesis class selection has been done

by humans prior to learning and has remained fixed during learning. Finally, learning rates, CFM confidence

parameter reduction schedules, and regularization (e.g., weight decay and weight smoothing factors) have

been fixed by humans prior to learning. If the learning machine is to be truly autonomous, all of these

choices must be controlled by the machine during learning. Clearly then. future work should entail theory

and procedures by which the learning machine can continuously manipulate the training data, the hypothesis

class, and the learning search procedure in a manner that both exploits and is consistent with the efficient,

minimum-complexity nature of differential learning.

The critical reader will note that numerous researchers are exploring both theories and algorithms for

automatically regulating model complexity during learning. The theoretical work of MacKay (e.g., (881) and

the cascade correlation 1321 and optimal brain damage (OBD) 1851 algorithms are well-known works in the

connectionist literature. Since all of these works derive from an inefficient probabilistic view of learning,

they can all be shown to be inefficient paradigms for model complexity regulation. Nevertheless, they can be

adapted to differential learning (a process that we have already begun with encouraging results). We therefore

believe that differential variants of these techniques hold promise for autonomous differential learning.

Finally, a statistically rigorous method of testing/rejecting classification hypotheses made by the

differentially-generated classifier after learning needs to be developed. Such a testing procedure could form

the basis of more sophisticated hypothesis testing procedures for model interpretation (recall section 11.2) as

well as classification assessment.

0
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Appendix A

Glossary of Notation

We employ a mixture of the general notational conventions of [45, 29, 117, 1001. The list below contains a

comprehensive list of notation used in the text; common symbols are omitted.

Symbol Meaning

Read, "... is defined as..."
Read, "Therefore."

*Read, "... is not in..."

Read, "There does not exist..."

> Read, approximately greater than or equal to ...

< Read, "... approximately less than or equal to..."

Vz (f(Z)) The gradient of f(Z) with respect to the vector Z.
0 The zero vector (the number of elements in the vector is context-

dependent).
[" I The cardinality of a set; the absolute value of a number; the determinant

of a matrix.
If" fI The magnitude of a vector.
ARFnI+o Asymptotic relative efficiency (see definition 3.18).
Bij, The boundary on X between classes W, and W,.
C The number of classes (i.e., concepts) in a pattern recognition task.
CE The Kullback-Leibler information distance [82, 81], also known as the

"cross entropy" objective function.
CE (1S' 1) The CE generated by the training sample S", given the discriminator

19(X 19) with parameterization 0.
C.F The correct fraction of discriminator output space (see definition 5.12).

The monotonic correct fraction of discriminator output space (see defini-
tion 5.15).

P CF,,,, (C) The monotonic correct fraction of discriminator output space associated
with the objective function t, given a C-dimensional discriminator output
space (i.e., a C-class learning task).
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Symbol Meaning 0

CYF-,nIno The non-monotonic correct fraction of discriminator output space (see
definition 5.14).

CFM The CFM objective function.
CFM (S" 0 6) The CFM generated by the training sample S", given the discriminator

1(X10) with parameterization 0. 0
CFM (Sn I 0[k]) The CFM generated by the training sample S", given the discriminator

9(XI 0) with parameterization 0[k] at learning iteration k.
dimvc (-) The Vapnik-Chervonenkis (VC) dimension [137, 136], a measure of

classifier complexity (see section 3.5).
6 The discrininant differential (see definition 2.7). Note: the somewhat

smaller notation 6(. ) denotes the Dirac delta function (e.g., [80, pg. 0
266]); the use is made clear in the text.
Given the example/class label pair (Xi , Wy,) 5•r = y. - y-, is the
discriminant differential associated with the class W' of the example Xj
(see section 2.2.4).
The reject threshold value of the discriminant differential: if a test example
generates a discriminant differential less than this value, the classification
is rejected as invalid.

6ktar,,ed The learned threshold value of the discriminant differential: if a training
example generates a discriminant differential greater than or equal to this
value, the example has been learned.

bi(X 0) The discriminant differential associated with the ith discriminant function
gi(X 16) (see definition 2.7).

(I 0") The discriminant differential associated with the ith discriminant function
gi(X 10*) (see definition 2.7). This notation indicates the the discrimina-
tor's parameterization 06 is optimal to the extent that it maximizes the
CFM objective function.

D The high-state target value associated with an error measure objective
function (see section 2.3).
"The low-state target value associated with an error measure objective
function (see section 2.3).

23(X) A classifier of the random vector X.
D(X)V,.., A Bayes-optimal classifier of X (see definition 2. 1).
W (X) The efficient classifier of X (see definition 3.12).
D*(X) The relatively efficient classifier of X (see definition 3.15), that is, the

classifier that exhibits the lowest MSDE allowed by the hypothesis class
from which it is generated.

"V (X 1 0) The class label (or classification) assigned to the feature vector X by the
classifier.

DError [Q 0] The discriminant error of the classifier generated from the hypothesis class
G(e) by the learning strategy A, given a training sample size of n (see
definition 3.6).

DBias a• In, G(e), A] The discriminant bias of the classifier generated from the hypothesis class
G(0) by the learning strategy A, given a training sample size of n (see
definition 3.7).

DVar [C In, G(e), A] The discriminant variance of the classifier generated from the hypothesis
class G(0) by the learning strategy A, given a training sample size of
n (see definition 3.8).

0
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Symbol Meaning

DBias[Q [ n,.... I n.),G(e), A]
The estintateddiscriminant bias of the classifier repeatedly generated from
the hypothesis class G(e) by the learning strategy A, given K training
samples of sizes {n,, ... ,nfK}.DV-ar [g 14111 ..... G(e). A]
The estimated discriminant variance of the classifier repeatedly generated
from the hypothesis class G(0) by the learning strategy A, given K
training samples of sizes {ni , ..... nK}.

A*WIX(Wi I X) The a posteriori differential of class Wi, given the feature vector X (see
definition 2.5).

EM The general error measure objective function.
EM (S' 10) The EM generated by the training sample S", given the discriminator

C(X I0) with parameterization 9.
Ex [f(X) ] The expectation of the function f(X), taken over the domain of the random

vector (or variable) X.
. Y(X) A discriminant function (more precisely, a set of C discriminant functions)

for X.
The Bayesian discriminant function (BDF) of X (in any of its forms
see definition 2.2).

Y(X)&j?.•x.Prohbabii~isic A probabilistic form of the BDF (definition 2.4).
prhaili.gic A strictly probabilistic form of the BDF (definition 2.3).

* X)k wam.Differetial A differential form of the BDF (definition 2.6).
Y(X)a.W.S.ricdlyDifferen.ial A strictly differential form of the BDF (definition 2.5).
FBao, The set of all BDFs of X.
FB. ,.Prohi#i..ic The set of all probabilistic forms of the BDF of X.
Foe sf.&,iaij. Prbwic The set of all strictly probabilistic forms of the BDF of X.
FBa•e..Differential The set of all differential forms of the BDF of X.
F&a%..-&ric,1y Differential The set of all strictly differential forms of the BDF of X.
t The general objective function (or empirical risk measure).
gi(X 10) The classifier's discriminant function for class Wi; the parameterization

of the over-all discriminator is 0.
gi(X I 0) The classifier's discriminant function for class Wi; the parameterization

of the over-all discriminator is 0', which is optimal by some objective
function.

9(X 19) The classifier's discriminator (i.e., the set of C discriminant functions);
the discriminator's parameterization is 9.

9(X 10) The classifier's discriminator (i.e., the set of C discriminant functions);
the discriminator's parameterization is G% which is optimal by some
objective function.

*(X I A Bayesian discriminant function (BDF) of X contained in the hypothesis
class G(e).

Q(X I O)Baner.erobai~wgc A probabilistic form of the BDF of X contained in the hypothesis classQ09).
Q(X I O)Baye.Strgctydili.uic A strictly probabilistic form of the BDF of X contained in the hypothesis

class G(e).
Q(X I O)aave.Oflre,,aI A differential form of the BDF of X contained in the hypothesis class

G(e).
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Symbol Meaning

! (X I O)yane.-Strietgy Dferential A strictly differential form of the BDF of X contained in the hypothesis
class G(e).

G The functional basis of the hypothesis class G(8).
G(e) The hypothesis class with functional basis G and parameter space 49.
9 The set of all hypothesis classes.
G(es) The hypothesis class (in the set of all hypothesis classes) with the minimum

functional complexity necessary to perform a particular pattern recognition
task with a specified level of generalization. The generalization of a
classifier generated from G(e 4.) with a training sample size of n is
measured in terms of its mean-squared discriminant error (MSDE - see
definition 3.9).

G(e, X)pro,,e The proper parametric model of X (see definition 3.13).
The set of all BDFs of X in the hypothesis class G(0).

G(8)Brye..pn,•iaiic( The set of all probabilistic forms of the BDF of X in the hypothesis class
G(e).

G(e)&lel.,.s,,irrd.. Prnhhili.ic The set of all strictly probabilistic forms of the BDF of X in the hypothesis
class G(e).

G(9)Rr.•.,.Differenial The set of all differential forms of the BDF of X in the hypothesis class
G(e).

G(i9)aye..Srrtim, Differential The set of all strictly differential forms of the BDF of X in the hypothesis
class G(8).

G( 6.)8•..e., The set of all BDFs of X in the minimum-complexity hypothesis class
G(e) (i.e., the hypothesis class with the least functional complexity 0
necessary for Bayesian discrimination).
The set of all probabilistic forms of the BDF of X in the minimum-
complexity hypothesis class G(9).

G(9J.)B..e.-Strcaly l.,c The set of all strictly probabilistic forms of the BDF of X in the
minimum-complexity hypothesis class G(9).
The set of all differential forms of the BDF of X in the minimum- 0
complexity hypothesis class G(e).

G(8,)Bryes.sSiv Day~ifeenibl The set of all strictly differential forms of the BDF of X in the minimum-
complexity hypothesis class G(e).

T [-] The general classifier functional complexity measure of section 3.5,
page 74.

T~. [. I The upper bound on T.[- ] for a particular choice of hypothesis class (see
section 3.5).

Hz (f(Z)) The Hessian (i.e., the matrix of second-order derivatives) of f(Z) with
respect to the vector Z.

iff Read, "... if and only if..."

I The identity matrix.

_I The identity vector.

I- The incorrect fraction of discriminator output space (see definition 5.13).
The monotonic incorrect fraction of discriminator output space (see defi-
nition 5.17).

.XY.',,,,,(C) The monotonic incorrect fraction of discriminator output space associated
with the objective function $P, given a C-dimensional discriminator output
space (i.e., a C-class learning task).
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Symbol Meaning

IF7-..,mn The non-monotonic incorrect fraction of discriminator output space (see
definition 5.16).

L(. ) A log-likelihood function.
The set of all learning strategies.

A The general learning strategy.
AA The differential learning strategy (associated with the CFM objective

function).
Ap The probabilistic learning strategy (associated with error measure objective.

functions).
AP-SsE Probabilistic learning via the MSE objective function.
AP-CE Probabilistic learning via the CE objective function.
AP-LMS Probabilistic learning via the LMS objective function (this is identical to

learning via the MSE objective function).
AP.ML Probabilistic learning via the method of maximum-likelihood.
MAE The mean absolute error (MAE) objective function (also known as "least

absolute error" and "least absolute deviation".
MAE (Sn I 0) The MAE generated by the training sample Sn', given the discriminator

g(X 10) with parameterization 0.
A4Y The monotonic fraction of discriminator output space (see definition 5.18).
* A4F(C) The monotonic fraction of discriminator output space associated with the

objective function F, given a C-dimensional discriminator output space
(i.e., a C-class learning task).

* MSDE [Q In, G(e), A) The mean-squared discriminant error (MSDE) of the classifier generated
from the hypothesis class G(&) by the learning strategy A, given a
training sample size of n (see definition 3.9).

MSDE[ {in,... ,n}, G(e), A]
The estimnatedMSDE of the classifier repeatedly generated from the hy-
pothesis class G(e) by the learning strategy A, given K training
samples of sizes {in, ..... nK}.

MSE The mean-squared error (MSE) objective function.
MSE (3S j8) The MSE generated by the training sample 5n, given the discriminator

Q(X 18) with parameterization 9.
The mean of a Gaussian-distributed random vector. The notation Pi
generally refers to the mean of the random vector's ith class-conditional
Gaussian probability density function.

np The number of examples of the pattern X,, in a training sample of size n.
noi The number of examples of the pattern Xp representing class Wi in a

training sample of size n.
c A random noise variable.
4; A random noise vector.
W. The ith class (i.e., concept) that a random feature vector can represent.

Read, "Not Wi."
W., The classification assigned to X by the Bayes-optimal classifier (defini-

tion 2. 1, page 17).
The domain of the class label W. Sometimes called classification
(or class label) space, that is, the set of all class labels with which a
feature vector can be paired. For the C-class pattern recognition task.
W =E



316 Appendix A: GIossar',

Symbol Meaning

PA() The probability that the random variable (or vector) z will take on the
value (. This notation is equivalent to the notation P(z = ().

PA( ) An estimate of the probability that the random variable (or vector) z will
take on the value (.

PW.(Pi) The prior probability of class Wi.
PwIx(03i IX) The a posteriori probability of class Wi, given the feature vector X.
P. (Q, 0) The error rate (i.e., probability of error) for the classifier with the discrim-

inator 9(X I 0) (see definition 3. 1).
(9I 6, 4n estimate of the error rate for the classifier with the discriminator

t(X 10); the estimate is based on a test sample size of il (see defini-
tion 8. 1 ).

P, -y,) The error rate exhibited by the Bayes-optimal classifier of X (see
definition 3.2).

Pe (-F'&•..) An estimate of the error rate exhibited by the Bayes-optimal classifier of
X.

R A rotation matrix.
RE Estimated relative efficiency (see definition 8.6). 0
R The set of all real numbers.

P(X MThe probability density function (pdf) of the feature vector X.

Note: When written p1 (X), the notation is meant to convey, "the pdf of X evaluated at some

arbitrary value of X;" when written p1(Z), the notation is meant to convey, "the pdf of X eval-

uated at X = Z." We use this same notational convention for other probability measures of X.

Pxp1 (X I WO) The ith class-conditional pdf of X, that is, the pdf of X when it represents
class Wi.

px,V(X,Wi) The joint probability density of X and class Woi.
s.l. Read, ".... such that..."
SNR Signal-to-noise ratio.
$"n The training sample of size n, that is, the set of n randomly-drawn

example/class label pairs { (X , W '), ..... (X ', W ") } used to generate
the classifier from its hypothesis class.

0i [6, The CFM generated by a discriminant differential of 6 when the CFM
confidence parameter is V/,. Note: the somewhat smaller notation a2
denotes the variance parameter of a Gaussian-distributed random variable;
the use is made clear in the text.

,E A covariance matrix. The notation Ei generally refers to the covariance
matrix of the random vector's ith class-conditional probability density
function.

T Denotes the transpose of a vector (e.g., XT).
ri((Xi,Wi)) A target function: when Wi = W,), ri((XJ,Wi)) = I ; otherwise

r ((XJ,Wi)) = 0.
7" A target vector for the discriminator C(X 10), used when learning

probabilistically via an error measure objective function.
"((XJIWPM 'The target vector for the discriminator C(X' 16), used when learning

probabilistically via an error measure objective function. The target class
is indicated by W1 .
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Symbol Meaning

0 A parameter associated with the classifier's discriminator.
0 The parameter vector of the classifier's discriminator.
00 The discriminator's initial parameterization (i.e., its parameterization prior

to learning).
e The domain of the parameter vector 0. Sometimes called parameter space,

that is, the set of all parameter vectors that the discriminator can have:
O E e.

0' A discriminator's parameter vector that is optimal by some objective
function.

0i" The ith element of the optimal parameter vector 0*.
t(X) Refer to (2.93), page 46.
-'0(X) Refer to (2.93), page 46.
U(x) The Heaviside step function of x (e.g., [80, pg. 258])
u+ (x) The modified Heaviside step function, which is equal to I for all x > 0,

0forallx <0,and ½ for allx =0.
Var[x] The variance (i.e., second central moment) of the random variable x.
WV The stochastic class label associated with the feature vector X.
WiJ The class label associated the jth example of X.
WVI The class label associated with the jth example of the pattern Xp. Note

that W/ implies a specific value of X (i.e., it implies the pattern Xp);
WJ does not.

X The domain of the feature vector X. Sometimes called feature vector
space, that is, the set of all possible feature vectors such that X E X.

X The feature vector (or attribute vector).
XJ The jth example of X, that is, the jth realization of the random feature

vector X.
(Xj,WJ) The jth example of X, along with its class label.
XP, A particular pattern (i.e., a particular value of X).
Xi The jth example of Xp, that is, the jth realization of the random feature

vector X having the value X.. Note that XJ implies a specific value of

X (i.e., it implies the pattern Xp ); XJ does not.
(X, Wj/) The jth example of Xp, along with its class label.
=(n) The number of misclassified examples in S", the training sample of size

n.
-~( 1) The number of misclassified examples in the test sample of size 11.

Yi Short-hand notation for the ith discriminator output gi(X 10).
y,. Given the example/class label pair (X J, W J), y. is the discriminator

output associated with the class W/ of the example Xi (see section 2.2.4).
yTr Given the example/class label pair (Xi, W'), T, is the largest discrim-

inator output not associated with the class W' of the example Xi (see
section 2.2.4).

Y Short-hand notation for the output state of the classifier's discriminator
g(XI1).

Y ,• The "correct" vertex of discriminator output space (see (5.3)).
YiI1re The "incorrect" vertex of discriminator output space (see (5.2)).
Y The domain of the discriminator's output Y. Sometimes called discrimi-

nator output space (see section 2.2. 1). Thus, Y E Y.
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Symbol Meaning

:YCOr,•c The correct region (or side) of discriminator output space (see defini-
tion 5.8).

Yi. The correct region (or side) of discriminator output space (see defini-
tion 5.6). 5
The confidence parameter for the classification figure-of-merit (CFM
objective function).

Z+ The set of all positive integers (i.e., all positive natural numbers).



Appendix B

Notes on Convergence

The proofs of chapters 2 and 3 rely on notions of convergence that require some explanation. Ide-

ally, we would expect that the statistics of a training sample S" = j(X' ,W'), ..... (X",,W")

reflect the true nature of the random feature vector X (i.e., px(X), {Pw(W)i) ).....Pw(Wjc)}, and

{PjPvx(W- I X), ... , PVIx(Woc I X))) in the limit that the training sample size grows infinitely large (i.e.,

n -4 o•). Moreover, we would expect that this convergence of the empirical probability measures to the

true measures would, for each and every asymptotically large training sample, occur with certainty (i.e.,

convergence with.probability one) and uniformly over all feature vector space X (i.e., convergence at some

non-zero rate would be guaranteed for all X E X at which Px(X) is defined).

In fact the empirical cumulative distribution function (cdf) of the arbitrary random variable x does, in

general, uniformly converge to the true underlying cdf with probability one. The Glivenko-Cantelli Theorem

(e.g., [105, sec. [1.31) proves this expression of the uniform strong law of large numbers.' Vapnik describes

an extension of the theorem to the general N-dimensional random feature vector X in [136, ch. 61; we

assume that X exhibits uniform convergence with probability one accordingly.

'See [28. sec. 9.61 for an concise. readable summary of the Glivenko-Cantelli Theorem.
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Appendix C

The Box Plot Statistical Summary

The box plot is a non-parametric statistical summary developed by John W. Tukey 1131, ch. 2]1. Given a

sample S" = {x, ,.... x. } of the random variable x, the box plot is a concise graphical summary of the

empirical low-order moments of x - one that makes no assumptions about the probability density function

(pdf) of x.

C.1 How to Read a Box Plot

Figure C. I shows an annotated box plot for a hypothetical sample 8" of x. Note that all the examples of

SS" fall well within the range of 30 < x < 100. The box plot is formed by sorting all the examples and

dividing them into "quartiles" (i.e., into four groups, each of which represents 25% of S"). The box itself

encompasses the middle 50% of S1. The top 25% of S" is denicted by the vertical line extending above

the box, and the bottom 25% of S" is depicted by the vertical r;n- extending below the box. The box is

divided by a horizontal line at the median of S". The inner and (if shown) outer "T -shaped "fences" of

each plot depict the nominal lower bound of the first quartile and nominal upper bound of the fourth quartile.

Any extreme first/fourth quartile values falling beyond the outer fence(s) are plotted as dots. The box plot

therefore displays all of the data, emphasizing the median and a quartile partitioning of the sample.

The box plot has a number of advantages as a statistical graphic:

* It is simple to compute and display.

e It makes no assumption about the pdf p,(x) of x.

e It is generally a more meaningful graphic than alternatives such as histograms, whisker plots, e. :. when

the sample size (i.e., n ) is small [ 13 1, ch. 2].

e One can easily infer the low order central/non-central moments of x from the box plot.

'Tukey is well-known for the Cooley.Tukey fast fourier transform (FFT) algorithm and his work with Blackman in spectral
estimation.
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100_

90

STop 264/ (Poluft Cuavtile)

Upper-mid 25% 'Third Quarti F) a)

70 Lower-mid 25% (Second Quartile)

Bottom, 2S%.(First Quartile) .

60 adjacent fence

50-

40 _Lote f4o
* e&xtre1e Outlier

30

Figure C. 1: A box plot for a sample of the random variable x.

0
From figure C.A we can see that the median value for ,S' is 75. " he middle 50% of the sample is fairly

tightly concentrated about the median on the interval [70, 801. The bottom 25% of the sample (i.e., the first

quartile) spans the interval [37, 701, and there is an extreme statistical outlier at 37. In contrast, the top 25%

(i.e., the fourth quartile) is more tightly distributed on the interval [80, 90]. Thus, the box plot indicates that

the empirical distribution of x is skewed towards higher values of x. It should be clear from the figure

that the box plot gives the observer a concise non-parametric sketch of the median, variance, skewness, and

kurtosis of x. Specifically, the height of the box and the length of its fences are an indication of the variance

in the classifier's error rate over all trials; the symmetry of the box plot (or lack thereof) is an indication of

the skewness; and the height of the box in comparison to the length of the fences is an indication of kurtosis

(i.e., how abruptly the sample peaks about its median).

The computations by which the box plot is constructed from a data sample are detailed in [ 13 1, ch. 21.

We provide a summary of them in the following section. We emphasize that it is not necessary to understand

the following material in order to interpret a box plot, we provide it Lot the convenience of those who wish 9
to know precisely how the box plot fences are constructed.
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4
C.2 How to Construct a Box Plot 2

The first step in constructing a box plot is to sort the sample S". From this sorted version of S, (which we
will denote by S" ) we develop a "5-number summary": it comprises the lower extreme value (low), the

first quartile boundary (QI), the median (mard), the third quartile boundary (Q3). and the upper extreme value

(high) of the sample. If x(i• denotes the (n - i + I )th ranked example of S," (i.e., x(i) denotes the lower

extreme example and xj,) denotes the upper extreme example) then the indices of the examples that we use

to compute the five number summary are obtained from the following five real numbers (note that the Lz]

operator returns the largest integer not greater than z, and the [ z ] operator returns the smallest integer not

less than z ):

i[4ow] = I

i[med] = !n+I2

ilhigh) = n

i[QI] = [•i[med]J + I]

i[Q31 = n + I - i[QI]

The resulting five number summary is given by

low = X(,'1iow] = X(i)
med = f(i[med])

high = x(,highp = xf,,)

* QI = f(i[QI])

Q3 = f(i[Q3])

where Z+ denotes the set of all positive integers, and

f(i[number]) = / " " i[numberl E Z+

I[ . [x(!.,r•,,erfl) + Xil4num•,r]l)j , otherwise

Table C. I lists the indices of the sorted RVs that we would use to compute the five number summary for

various sample sizes (i.e., various nis).
2
Adapied from ihe original by Tukey f 13 t. ch. 21

0
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Indices of x(i)

n low QI med Q3 high
3 1 1 2 3 3
4 I 1.2 2,3 3.4 4
5 I 2 3 4 5
6 I 2 3,4 5 6
7 I 2,3 4 5.6 7
8 1 2,3 4,5 637 8
9 I 3 5 7 9

10 1 3 5,6 8 10
I 1 I 3,4 6 8,9 I1
12 I 3,4 6,7 9,10 12 *
13 I 4 7 10 13
14 1 4 7,8 i1 14
15 I 4,5 8 11.12 15

Table C. I: A listing of indices i for x4 i) used to compute box plot 5-number summaries of ,5" for various
sample sizes (i.e., various ns).

Once we have computed the 5-number summary we have most of the box plot built (i.e., we know the

location of the box and its median, as well as the upper and lower extreme values). The only remaining

computations are those for the locations of the adjacent and outer fences for the first and fourth quartiles

of S". In short, the adjacent fence locations are displaced from their quartile boundary by no more than

1.5 times the distance between the first and third quartiles. Likewise, the outer fence locations are displaced

from their quartile boundary by no more than 3 times the distance between the first and third quartiles. The

displacement of a fence from its respective quartile boundary never exceeds the location of the extreme

example in the fence's quartile. This explains why some box plots appear to have missing fences (as is the

case for the fourth quartile data of figure C. 1); in reality the fences coincide with other fences or the quartile

boundaries, so they do not appear in the plot.

Quantitatively, the first quartile fences are given by

loweradjacentfence = QI 1.5[Q3- QI1, x111 < Qi - 1.51Q3 - QI]
I -I ), otherwise

lower outer fence = f Ql 3.01Q3 - QI1, x1l < QI - 3.01Q3 - QI]

t xI), otherwise

The fourth quartile quartile fences are given by
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upper adjacent fence = Q3 + 1.5[Q3 - QI], X(,,d > Q3 + 1.5[Q3 - QI]
Xfn), otherwise

r outer fence = f Q3 + 3.O[Q3 - QI], x11I > Q3 + 3.0[Q3 - Q1]

Xu•r, otherwise

(C.l)

For the case in which x is normally distributed (i.e., x ,- N(It. 0r
2 ) ), the adjacent and outer fences are

displaced two and four standard deviations from the quartile boundary respectively3.

Again, all examples in the sample falling outside the upper and lower outer fences are extreme outliers,

which are represented by individual "e" symbols.

0

0

0

0

3Assuming (hat the sample size n is large so that S" is reptesentative of x.

0
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Appendix D

A Synthetic Functional Form of the
0 Classification Figure of Merit

This appendix describes in detail the synthetic asymmetric function we employ for the classification

figure-of-merit. Our use of this functional form has a two-fold motivation:

"* Chapter 2 shows that differential learning requires a sigmoidal CFM function with variable "steepness".

However, the logistic sigmoidal form originally described in [55] is symmetric: when it has a steep

transition region its derivative is essentially zero outside of that region. As described in section D.3,

this leads to very small gradients in the search algorithm used to find the optimal parameterization of

the classifier. This in turn leads to unreasonably slow learning. In order to overcome the problem,

we desire an asymmetric sigmoid that retains a significant non-zero first derivative for yet un-learned

training examples (i.e., those with negative discriminant differentials 6)- even for the case in which

the sigmoid is steep in its transition region.

"* We require a mathematically simple synthetic form in order to minimize the number of floating point

computations necessary to evaluate the function and its first and second derivatives.

In section D. I we specify the synthetic form of the CFM objective function; in section D.2 we analyze

the computational requirements posed by its evaluation and that of its first two derivatives; in section D.3 we

analyze the convergence properties it engenders (i.e., how fast differential learning is, using synthetic CFM),

and on this basis contrast it with the original logistic sigmoidal form of CFM; in section D.4 we derive an

upper bound on the synthetic CFM confidence parameter Vi that guarantees Bayes-optimal discrimination,

as described in in section 2.4; in section D.6 we list ANSI-C source code for the synthetic form and its first

two derivatives.
We wish to emphasize that our development of the synthetic CFM objective function was motivated by

0 palpable deficiencies in the original logistic sigmoidal form. The deficiencies relate primarily to the poor

convergence properties and instability of differential learning via the original form of CFM, which we detail
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in section D.3. Some readers might find this appendix - and section D.3 in particular - rather abstract

and pedantic. We encourage such persons to recognize the cause-and-effect relationship here: the problems

associated with differential learning via the original logistic sigmoidal CFM objective function led to the

theory, rather than vice-versa. The details herein were (and remain) a necessary evil on the path to an

implementation of differential learning that works in practice as well as it does in theory.

D.1 Specifications for the Synthetic CFM Objective Function

We create a piece-wise linear sigmoid by connecting three line segments with two arcs (we abuse notation

by referring to these arcs in terms of their radii). This synthesis is depicted in figure D. 1. The lower radius

r,, is generated by a circle with a centroid (p.,/pu). which is constrained to lie on line segment A; the

radius is also constrained to be tangent to line segment B. The upper radius rp is generated by a circle with a

centroid (/'q,, pt,), which is constrained to lie on line segment C; the radius is constrained to be tangent to

the horizontal line of unit height.' A line drawn from point (-1,0) to point (x,,,ymn) (the latter of which

is tangent to the lower radius) forms the lower "leg" of the sigmoid. A line drawn from point (xm,ym) to

point (xp, yy) (points that are tangent to the lower and upper radii, respectively) forms the transition region

of the sigmoid. A line drawn from point (p.,, I) to point ( 1,1 ) (the former of which is tangent to the upper

radius) forms the upper leg of the sigmoid. This upper leg always has a value of one and a slope of zero.

The steepness of the sigmoid is increased by moving the centroids of the two circles toward 6 = 0 along

lines A and C. Conversely, the steepness is decreased by moving the centroids of the two circles away from

6 = 0 along lines A and C. Since the lower radius r. is constrained always to be tangent to line segment B

and the upper radius rp, is constrained always to be tangent to the horizontal line of unit height, the radii are

proportional to their centroids' horizontal distances from the vertical line at 6 0. In the limit that these

centroid distances are zero (corresponding to a confidence parameter t/' of zero), 01 [6, 1,] is a Heaviside

step function. In the limit that these centroid distances are their maximum values (corresponding to 0/, = I ),

Or [6, /,] is a nearly linear function of 6 when 6 < I, otherwise it assumes its maximum value of unity.

Figure 2.6 shows or [6, VI,] for eight different values of its (single) confidence parameter V/'.
Recall from section 2.2.4 that the synthetic CFM objective function must satisfy the following constraints:

I. The function must have finite lower and upper bounds I and h:

-oo (< 1_< or[6,fl' < h < o (D.1)

'The parameters that specify line segments A. B. and C in figure D.t were chosen by the author using a graphic tool designed for
this express purpose. The qualitative design criterion for the synthetic function were I) that it retain a significant non-zero slope, even
when its transition region becomes steep, and 2) that the arcs connecting the three line segments of the function have reasonably large
radii for all but very steep transition regions. This latter characteristic ensure% relatively small higher-order derivatives for the synthetic
function at the arc segments.
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S(Xtp, y,p) (9Ixp, I)
(l xn ,yn) B

1.0%
* (IJxp'Iyp)

...... • _ . +.......... .._. . .......... • - .... .S .......... .... .... .. i . 1 7l . -r , . .

O [6  ......... r. .. .
S.............lope

0. ... tercept =bp*0.0 • i I J •

-1.07 / -00• • (Xin, Yin)1.

1.0
slope=a* (Xann Ytnn) ) 0)

Figure D. 1: Details of the synthetic asymmetric sigmoidal form of the classification figure-of-merit (CFM).
This synthetic function is shown for various confidence parameter ( i' ) values in figure 2.6.

The synthetic function is bounded on [I = 0, h = 11 for - I < 6 < I , so it satisfies this constraint

for classifiers with outputs bounded on [0,11. Since any classifier's output state can be normalized

to the interval [0,11 by a simple affine transformation, this synthetic function can be used with any

classifier.

2. The function must be be a strictly non-decreasing sigmoidal function of 6:

7u60i'] > 0, for small 161
* (D.2)

o I] >0, otherwise

Equation (D.8) and figures 2.6 and D. I confirm that the synthetic function has this property.

3. The function must have a maximum slope occurring in its transition region. This transition slope

should be inversely proportional to the confidence parameter I/':

max -4- [0,ii'] x L,', I' E (0, 1) (D.3)

By inspection of figure D.1, it is clear that max 6 do" [6,+", - a. The constraint that a, be

proportional to tV'-I ensures that the function's derivative in the transition region is bounded for all

non-zero values of V,. Section D.3 confirms that the synthetic function has this property.

4. The lower leg of the sigmoidal function must have a positive slope, which should be linearly
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proportional to /"': 9

min [6, ' ix t/', , ' E (0,1] (D.4)
6<0

This constraint ensures that the derivative of the function retains a significant positive value for negative 9
values of 6, as long as t/' is greater than zero. This, in turn, ensures that gradient-based searches

used to optimize the parameters of the classifier by maximizing CFM do not exhibit exponentially

long convergence times as the steepness of the sigmoidal function's transition region grows large.

Section D.3 explains this property in more detail and confirms that the synthetic function has it.

5. The sigmoidal function should span a continuum between an approximately linear function of 6 for

I- to a step function of 6 for 0 -4 0+:

li,• OT [6,•'] • ao0 + bo,

(D.5)
limv,o÷ TO"[6, 11'] = alU+(b) + b,

where .ao, bo, a,, and b, are constants and

(0, (5<0

U+ (6) =(D.6)
LI, 6>0

Equations (D.7) and (D.10) -- (D.46) and figures 2.6 and D.A confirm that the synthetic function has

this property.

Section D.6 lists the source code that implements this synthetic form of the CFM objective function. The

precise mathematical expressions for 0 [6, n'] and its first two derivatives are

a•*(b + I) I< 6 < x..

S- V - (6 - •) 2 . X,.. < 6 < X.

or [6,1, = ,6 + b;, XM < 6 < X, (D.7)

tI, + Vr2 I,,)2 XP < < l,.

>0
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a. < <-1 6 x,
>0

.r,2 - (6 - ,,)1-'/2(6.. -,,n. Xgn < 6 < X

>0 >0

d [6. a- . x,,, -6 : xr,, (D.8)

>0

0-[r,2 - ,<~p,)2]I/ X < < t
_ _ _ _ ___ - - . - - . < 6 < 0.p

0, 6> .

O. -1<6 < x,.,

[r2 - (6 - p.)2,1/ 2

*1[( .-,,._n). [r2 -(6- + , Xnn < 6 < X,
• d2

d-2 or 0, x < _< xq, (D.9)

- -( - ,,)21-1/2

. [(6 - - (6 - ,,)2K- + X. P, < 6 < 11,

0, 6Ž > 1.

Each time 4i,/ is changed. the following computations (listed in regressive order) must be performed to

update the synthetic function (all angles are in radians):

b = yip - ap x (D. 10)

xp = pip + rp cos(ZL1) (D.AI)

Y, = ptv + rp, sin(ZL) (D.12)

X"= - r, cos(iL) (D. 13)

Li = -r + ZP (D.14)

02
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ap1  = tan(L/) (D.15)

= tan\ (ll, + sin- Di (D.16)

Di = //(I'.p - Pr,,,)2 + (Itp - 1€,,) (D. 17)

a' = tan(Z 3 ) (D. 18)

x,,,, = D3 cos(Z3)- I (D.19)

L.,a= + I') sin -I( (D.20)

+

D3 = V -R= (D.21)

S (,. + I)2 +,, (D.22)

= R. (D.23)

= - cos(Z4) (D.24)

= 4 sin(L 4 ) (D.25)

LP= - - ', (D.26)
ao

S= I- r (D.27)

4 = T-.i/' (D.28)

r = Rp•/' (D.29)
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The following quantities are constants (all angles are in radians):

4= tan-' (1 ., (D.30)

= .,,, + 1p2 (D.31)

S= X1 - Rn cos( 7 - L6) (D.32)
* 2

1,.o = p' + R, sin(- - Z6 ) (D.33)
2

x, = xo + Lsin(/s) (D.34)

Yj = yo + Lcos(Z5 ) (D.35)

XOa2 
(D.36)

aj - a2

yo = a, a2 (D.37)
al - a2

L = (D.38)

tan Z7

Z5 = tan-'(a 2) (D.39)

Z6 = tan-i'(a,) (D.40)

7r tan-'(a,) - tan-'(a2)
17 = - - (D.41)2 2

R, = 0.7 (i.e., r. I ' = I) (D.42)

a2 = 0.5 (D.43)

a, = 5.0 (D.44)

R, = -ao = 0.5 (i.e., rp IV,' - I) (D.45)



334 Appendix D: Synthetic CFM

ao = -0.5 (D.46)

D.2 The Computational Cost of the Synthetic CFM Objective Function

Since the steepness of the sigmoid is adjusted infrequently,2 evaluation of this synthetic function and its first

two derivatives involves few floating point computations, as indicated by (D.7) - (D.9). The function is

evaluated by comparing its argument with the intervals on 6 corresponding to the three line segments and

two radii. In the case that the argument corresponds to a line segment, the function evaluation requires one

multiplication and one addition, and its derivative evaluations require a constant look-up. In the case that the

argument corresponds to a radius, the function evaluation requires one multiplication, three additions, and

one square root computation; its first derivative's evaluation requires two multiplications, two additions, and

one square root computation; its second derivative's evaluation requires four multiplications, three additions,

and one square root computation. Thus, the computational cost of evaluating this synthetic function and its

first two derivatives is comparable to the cost of evaluating the logistic sigmoidal form of CFM [551 (see

section D.3. I) and its first two derivatives.

D.3 The Convergence Properties of Differential Learning via the CFM
Objective Function

As described by definitions 2.8 and 2.10, the differentiable supervised classifier employing differential

learning learns by maximizing the CFM objective function via a search (i.e., a numerical optimization

procedure) on parameter space. Regardless of the search algorithm's specific characteristics (e.g., 1106,

ch. 101), it uses the first derivative of the objective function in order to update the classifier's parameters

iteratively. The magnitude of the parameter change induced by each iteration of the search - that is, the rate

at which the classifier learns - is proportional to the objective function's first derivative (see section 5.5).

The magnitude of this derivative, in turn, is sigmoidally related to the discriminant differential engendered

by the training example. This leads us to define three classes of training examples on the basis of the

discriminant differentials they engender. The following definitions are illustrated in figure D.2.

Definition D.I Un-learned example: This is a training example that exhibits a negative discriminant

differential (i.e., one that the classifier does not classify correctly).

Definition D.2 Learned example: This is a training example that exhibits a positive discriminant

differential (i.e., one that the classifier does classify correctly). The magnitude of the discriminant differential
2Apin. this adjustment is made by altering the confidence parameter V, E (0. It of the function. Such an alteration requires the

rf-computation of the radii and their squares. the radius centroids. tangent points, and linear coefficients shown in figure D. I. Once
these values are computed via equations (D. 10) - (D.29), they need not be re-computed until and unless the confidence parameter is
changed again.
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Learned

Transition

Un-leamed
1.0
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* 0.0
-1.0 0.0 1.0

Figure D.2: Three types of training examples: un-leamed examples exhibit negative discriminant differentials;
transition examples exhibit discriminant differentials that correspond to the transition region of the synthetic
CFM sigmoid (therefore, some un-learned examples are also transition examples); learned examples have
positive differentials that correspond to the maximum CFM value of unity.

6 is large enough that the CFM it elicits is the maximum value of unity (01 [6, v'] = I). Thus, the minimum

discriminant differential that a learned example can exhibit depends on the confidence parameter V? of the

CFM objective finction; this minimum value of 6 is pr., (see figure D. i).

Definition D.3 Transition example: This is a training example that exhibits a discriminant differential

6 (either positive or negative)for which C [6, •i1, is in the transition region of the signioidal function.

Remark: Note that an unlearned example may also be a transition example.

If we accept the differential notion of learning for statistical pattern recognition as detailed in chapter 2,

then un-learned and transition training examples are the only ones that concern us. That is, a training example

is either learned (by definition D.2) or it is not, and we are concerned only with those that are not. The

convergence properties of differential learning via CFM follow from an analysis of the rate at which these yet

un-learned examples are learned (i.e., the rate at which they are transformed to learned examples, as defined

above). We wish this learning to proceed at a reasonable rate, so we must avoid unreasonably slow learning.

Definition D.4 Unreasonably slow learning strategy: Since the rate at Which a training example is

learned is proportional to U Or [6, v'], where 6 is the discriminant differential elicited by the example,

transition examples have the highest learning rate. We denote the ratio of -4- [6, 0t] for transition examples

to WhO [I(. P;'] for unlearned examples by i( i'). If 61(0c") increases exponentially with decreasing IV',
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learning becomes dominated by the transition examples for small 0": the t /assifier's parameters are updated

to transform the transition examples into learned examples, while the un-learned examples are ignored

(because the derivatives they elicit are so small in comparison to those of the transition examples). Under

these circumstances, it takes an unreasonably long time (e.g., (58. pp. 155-1581) to learn the yet un-learned

training examples, and we characterize the (differential) learning strategy as unreasonably slow.

Definition D.5 Reasonably fast learning strategy: A learning strategy that is not unireasonably slow by

definition D.4 is reasonably fast.

D.3.1 I he Convergence Properties Differential Learning via the Original Logistic

Sigmoidal Form of CFM

Figure D.3 shows the original logistic sigmoid functional form used for the CFM objective function [55]:

U [60,3] = o [I + exp(-i36 + ')]-' (D.47)

The linear scaling parameter a is generally taken to be unity, the parameter , sets the horizontal offset

of the sigmoid's transitien region, and the parameter I < 13 < 0o sets the steepness of the sigmoid's

transition region. Note that .3 in this original functional form is proportional to the inverse of the synthetic

function's confidence parameter:

/3 'x .I (D.48)

-a relationship that validates definitions D. I - D.5 for the logistic sigmoidal form as well as the synthetic

form of CFM. From (D.47) it is straightforward to prove that the first two derivatives of or [6,/3] with

respect to 6 are given by

doa [6. 3] = 130" [6, •1 (I 0" [6,3)1 (D.49)

and

-d' 01 = 13 uo[6, 1 - !t6 ) 1 -2 [ so)

Recall that a negative discriminant differential 6 indicates a misclassified training example. An objective

function with a non-zero first derivative for negative differentials is therefore essential to reasonably fast

learning. We know from chapter 2 that the CFM objective function must sometimes approximate a step

function in order to guarantee that the classifier approximates the error rate of the Bayesian discriminant

function as closely as possible. The original logistic sigmoidal form of CFM shown in figure D.3 has a very
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Iigur, 1).3: Left: The original logistic sigmoidal form of the CFM objective function for four values of the
steepness parameter if (figure adapted from f551). The differential tearning rate decreases exponentially with
increasing i; for all training examples that generate discriminant differentials (6 s) in the gray shaded region
of the plot (see lemma D. I). This region varies with /3: it comprises all values of 6 to the left of the point
at which the plot for a given value of 13 intersects with the shaded background. Right: The function's first
derivative with respect to the discriminant differential 6 for the same four values of 13.

small first derivative (right side of the figure) for negaiive discriminant differentials when it approximates

the step function. As implied in definition D.4, this prevents the search algorithm at the heart of the learning

strategy from converging in time that is a polynomial function of the steepness parameter fl. That is, the

first derivative of the original logistic sigmoidal form of the CFM ohjective function decreases in exponential

proportion to increasing iI for A < 0. As a direct result, the learning rate of any search algorithm rcjying..

on this first derivative decreases exponentially with increasing !I for 6 < 0.

Lemma I). I The rate of differential learning via the original logistic sigmoidal form of the CFM objective
ftnction generally decreases as C) [(-'1 (( > I, /Ji E !l.oo )for un-learned examples.

Proof : We fix the parameters v = I and ' - 0 in (D.47) without loss of generality. By (D.47) and

(D.49)

d orX 6 = exp(1t6) (I + 2 exp(-/36 ) + exp(-2fl3))

O(bviously. the logistic form of CFM also has a very small first derivative for positive discriminant differentials when it approximates
the step function. towever. positive discnimlnant diffcrentials correspond to leanred training examples when CFM approximates the
Mtep function We are not particularly concered with teamed examples; rather we are concened primarily with ten.lenrned examples.
which eshihil negaoiv, discrtminant differentials. If the objective function has very small derivatives for negative differentials. it will
take unreaonably long to lernm the yet un-learned examples. An asymmetric sigmoidAl form for CFM exhibits very small derivatives
few relttively large positive differentials, so it effectively irnores training examples that have already been learned. At the same time.
,he asytntwtric fr, m retains Oirable derivntives for all negative differentials, thereby focussing on teaming the yet.unleamed examples.
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ii

2 + exp(136 ) + exp(-!Ib4 ) (D.51)

If this derivative decreases exponentially with increasing 13, then there must exist some constant ( > I for 9

which

3< (-3 (D.52)

2 + exp(i36 ) + exp(-!36 ) -

or

In (2 + exp(!/3) + exp(-(36 )) - In(/I)

>0

Since In (2 + exp(.d36 ) + exp(-!34)) > In(exp(-/MS)) (D.53) is satisfied if

6 < In(-- ) (D.54)

/3

The bound is tight for large 1.1, but loose when 11.6 1 I. Thus, the first derivative of the logistic sigmoidal

form of CFM decreases exponentially for increasing #3 when the discriminant differential is less than the

upper bound given by the fight-hand side of (D.54). This bound is plotted in figure D.4. The left side of

figure D.3 also depicts the bound: it is the point at which 01 [6, 1] intersects the gray shaded background.

This leads us to conclude that the first derivative of the logistic sigmoidal form of CFM generally decreases

exponentially with increasing 13:

d In(13)
da [6, i] = [ V- 6 < ' > I (D.55)

Note that the minimum of -!!L occurs at exp(- 1) %L -. 368, so (D.55) holds for all 6 < -. 368, regard-
'3

dJless of the value of i3. Since the learning rate for yet un-learned examples is proportional to •(O [6 ,13],

the theorem is proven. i

Lemma D.2 The rate of differential learning via the original logistic sigmoidal form of the CFM objective

finction generally increases as 0 [131 (13 E [ I, o] ) for transition examples.

Proof : We fix the parameters a = I and ( = 0 in (D.47) without loss of generality. By inspection of

(D.50), we solve for the value of 6 that yields a CFM second derivative of zero- this occurs at 6 = 0 for

all choices of i':
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* Figure D.4: The logistic sigmoidal form of the CFM objective function has a first derivative d " [or3] (see

figure D.3, right) that decreases exponentially with increasing steepness parameter 13 when the discriminant
differential 6 of the classifier falls below the uprer-bound value shown above. Note that the upper bound on
6 varies with [3: in no case is it less than exp- & .368. Figure D.3 (left) plots this upper bound value of
6 in light gray for all 13 > I.

d2

'= 0 V3i (D.56)

By (D.5 I),

0 ,] = = O [pl V ,3 (D.57)
S4

I

Lemmas D. I and D.2 lead us to the following theorem:

Theorem D.1 Differential learning via the original logistic signpoidalfornm of the CFM objective function is

unreasonably slow for 03 >> I.

Proof : We fix the parameters a = I and C - 0 in (D.47) without loss of generality. It is straightforward

to prove that the derivative decreases with increasing 161 on the tails of the sigmoid (i.e., for -136 + ( >> I ):

inspection of or [6,/0] in (D.5 ) reveals that it is positive-definite, and lemma D.2 proves that it is

maximum at 6 = 0. The ratio of the derivative in the transition region (lemma D.2) to the derivative in

the lower tail (lemma D. I) gives us a ratio of the learning rate for transition examples (i.e., ones that have
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small discriminant differentials) to the learning rate for yet un-leamed examples. We refer to this ratio of

derivatives as the learning rate ratio ok(13), which is

d d o r [0 , ill
db

2 + exp(6 /3) + exp(- 6 !i)
4

= C)[exp(161/3)] , 3 >> I, 6 < 0 (D.58)

Thus, by definition D.4A lemmas D.1 and D.2, and (D.58). differential learning via the logistic sigmoidal

form of CFM is unreasonably slow when /3 »> I. I

Renmark: Theorem D.A means that it takes a classifier employing differential learning via a gradient-based

search and the logistic sigmoidal form of CFM an unreasonably long time to learn some training examples.

Un-learnable examples are ones that require a steep CFM sigmoid to be learned (see section 2.4 and

section D.4); the first derivative of the logistic sigmoid for these un-learnable examples (which, by definition,

have a negative discriminant differential 6) is so small that it would take an unreasonably large number of

search iterations to modify the classifier's parameters enough for the example to be correctly classified (i.e.,

learned). The gray curve in figure D.5 shows the learning rate ratio 0(13) for values of [ from 2 to 30. The

curve assumes a nominal discriminant differential value of 6 = -. 7 in (D.58) for the un-learned examples.

In practice, values of /3 that exceed 10 result in unreasonably slow learning, owing to the dominance of

the transition example learning rate (note that 0(13) = 315 for /3 = 10.5). Numerical "tricks" such

as increasing the step size of the learning algorithm to increase the learning rate for yet un-learned training

examples do not compensate for the dominince of transition examples. In practice, they lead to unstable

oscillations in the search algorithm (in [55] it was found that 3I had to be less than about 10 to prevent

unstable learning). The net result is that /3 must be kept small to I) prevent unreasonably slow learning of

yet-unlearned training examples, and 2) prevent oscillations in the learning algorithm. Small values of /3

prevent (2.96) from being satisfied for all points on X, so some training examples are un-learnable and the

resulting classifier does not achieve as low an error rate as it might. This combination of deficiencies led us

to develop the synthetic form of CFM.

D.3.2 The Convergence Properties of Differential Learning via the Synthetic Form

of CFM

Differential learning via the synthetic form of the CFM objective function remains reasonably fast and free 0
of unstable oscillations, even when the transition region of the sigmoid is quite steep.

0
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Figure D.5: The ratio 'i(.) of the differential learning rate for transition examples to that for un-learned
* examples with a nominal discriminant differential value of 6 = -. 7. The ratio is plotted over the range of

the confidence parameter that regulates the steepness of the CFM objective function's sigmoidal form. Ratios
for the original logistic sigrnoidal form (,( (3), gray) and the synthetic form (4( t/),. black) are shown. Note
that the ,3 scale has been warped to match the ?i' scale: values of /3 are shown along the gray curve. Light
gray shading under the curves indicates the range of/j3 and i/' values for which learning is reasonably fast
and stable. The black curve shows that the synthetic form of CFM remains reasonably fast for un-learned
examples as its transition region becomes steep (1/' -+ .15); in contrast, the gray curve shows that the

* logistic sigmoidal form of CFM becomes unreasonably slow for un-learned examples while its transition
region is still relatively shallow (/3 = 10.5). Figure D.8 (top) shows both forms of CFM for ii = 10.5
(logistic sigmoidal) and the equivalent ii' = .49 (synthetic).

The rate of differential learning via the synthetic form of the CFM objective function generally decreases

as (9 [t'] ( i/' E (0, I] )for un-learned training exaniples.

Proof : It can be shown that the first derivative of the synthetic CFM objective function described above

is always greater in the lower radius and the transition region than it is in the lower leg -- regardless of the

*valuecof t/' E (0.1I1. Figure D.lI makes this plain, so we forego the rigorous proof. Given this relationship. the

first derivative of the synthetic CFM objective function is bounded from below for all negative discriminant

differentials (i.e.. for all un-learned examples):

d " [,/]>_ av6• < 0 (D.59)

By (D.18) - (D.29).

01
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a,, = tan(Z.)

= tan (tan-l( /_ -sin- (D.60

Since It = ,, '1?. sin(L4) and It, = -/"R., COS(Z4),

lim tan 1  tan' (t,R. sin(/ 4 )) ý i,'R,, sin(L 4 ) (D.61)•'--*o÷ \tr.n + I1

Since limr L = I (this is readily verifiable in figure D. I, so again we forego the rigorous proof),

lim sin-' L sin-' (VIiR.) 25R v (D.62)

By (D.59) - (D.62),

dS
lim 7O'[5,'] = lim a* a tan (;/(R, sin(L 4 ) - Rn))

SL, (1Z, sin(!4) - R,,)

= k (a constant)

= I[o"] V6 < 0 (D.63)

Thus, the first derivative of the synthetic CFM objective function is 0 [01] for all negative discriminant

differentials when V, is small. In fact, the relationship holds approximately for all values of al,. Figure D.6

shows that the slope of the synthetic CFM objective function's lower leg is 0 kj"" 1.] -or approximately

linear with respect to ;/' - for all 4' E (0, I]. Since the learning rate for un-learned examples is

proportional to a*, the theorem is proven. I

Lemma D.4 The rate of differential learning via the synthetic form of the CFM objective finction generally

increases as 0 [VI- _'] ( V E (0, 11 )for transition examples.

Proof : By our specification of the synthetic CFM objective function in section D. I, it always attains its

maximum derivative of a, in the transition region (see figure D. I).
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Figure D.6: The slope a* (black) of the synthetic
CFM objective function's lower leg, as a function of Figure D.7: The slope ap (black) of the synthetic
the confidence parameter t!0. Note that a* is 0 CFM objective function's transition region, as a
Sfor i', < 0.15 (see the proof of theorem D.3), and function of the confidence parameter Vi. Notef o r h < 0 .5 ( s e t e p o o f o f t e o r m D 3 ) , an d * is 0 [ ý." - ] fo r a ll •./, ( s e e th e p ro o f o f
0, for 0.15 < t/' < I . The linear and that ai

lemma D.4), as indicated by the asymptote (which is
C[,] asymptotes are shown in light gray. a linear function of V"- ) shown in light gray.

max do"[t,11'] = a[, V' (D.64)

By (D. 15) - (D.29),

ap = tan(z,)

- tan (tan-' (1P2 I'%)- sin-' (rp +r. (D.65)

Note that limý,..,o, rp = limV,,0+ r. = 0, and lim 0,+0+ DI = I,so

lim sin-' (rP i (D.66)I/•0 ( Di + =I 0 (.6

Note also that lim ,, _ v I, - it, = I. Since it,, = :/, and I't = -i"R, cos(/4),
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lim max d6o[6,•h] = lim a; = tan (tan-' , + o(
040+6 WO-- 1Z, o4

0'(l + ?n COS(Z4))

0 (D.67)

In fact, the relationship holds well for all values of t/' E (0,11 , as illustrated by figure D.7. Since the learning

rate for transition examples is proportional to a , the theorem is proven. I

Theorem D.2 Differential learning via the synthetic form of the CFM objectivefiniction is reasonably fast.

Proof : The ratio of the derivative in the transition region (lemma D.4) to the derivative in the lower tail 0
(lemma D.3) gives us the learning rate ratio (i.e., the ratio of the learning rate for transition examples to the

learning rate for yet un-learned examples):

di 0A maxb AOT,~'

min6 A o [6,iI
Q*

(D.68)

By (D.67) and (D.63)

lira ( = [m•2 (I + 7ZR cos(/ 4)) (1Z,, sin(Z 4)- R.)]

= O[V 2] (D.69)

In fact, the learning rate ratio 0(0") remains 0 [,2J for all 1/' E (0,1], so differential learning via

synthetic CFM is reasonably fast. I

Remark: From a practical viewpoint, differential learning via both forms of CFM becomes slow when the

learning rate ratio exceeds about 315. Figure D.5 illustrates that for 0i' > .15 the synthetic CFM learning

rate ratio is low enough to ensure reasonably fast learning. A comparison of the 0(/') curve with the 0(13) 0
curve for the logistic sigmoidal form of CFM emphasizes that the first derivative of the steep synthetic CFM
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Figure D.8: Equivalent logistic (dashed gray) and synthetic (solid black) CFM functional forms. Note
that the slope and shape of both functions is approximately the same in the transition region and upper
leg. In the lower leg the synthetic function's slope is orders of magnitude larger than its logistic sigmoidal
counterpart's. (top): The logistic sigmoidal form has a horizontal offset value of C = .1 /3 (see (D.47)).
Given the level of CFM steepness, the learning rate ratio is I I for the synthetic function and 315 for its
logistic sigmoidal counterpart; differential learning via the logistic sigmoidal form is unreasonably slow for
un-learned examples. (bottom): The logistic sigmoidal form has a horizontal offset value of ( = .05 /3 (see
(D.47)). Given this level of CFM steepness, the learning rate ratio is 315 for the synthetic function and 10"9
for its logistic sigmoidal counterpart. Differential learning via the synthetic form of CFM remains reasonably

* fast and tenable for un-learned examples as long as its sigmoid is no steeper than this ( • .l5).

objective function is orders of magnitude larger than that of the comparable logistic sigmoiial form; as a

result, the learning rate ratio for the synthetic form of CFM is orders of magnitude smaller than that for the

* comparable logistic sigmoidal form. Figure D.8 compares the logistic sigmoidal and synthetic forms of CFM

for two cases. The top figure shows the two forms for the value of /3 = 10.5 at which differential learning
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via the logistic sigmoidal form of CFM becomes slow. For this value of ,:, 6(.13) & 315; the comparable

synthetic form of CFM has a confidence parameter of 1;, = .49, for which ,(61') ; I I , so un-learned

examples are learned approximately 30 times faster than they are using the logistic sigmoidal form of CFM.

The bottom figure shows the two forms for the value of 0" = .15 at which differential learning via the

synthetic form of CFM becomes slow. For this value of k', ,'(ct") e 315; the logistic sigmoidal form of

CFM has a confidence parameter of ;1 = 65, for which d,(3) 9 1019. The learning rates of the two

functional forms differ by 17 orders of magnitude for un-learned examples, given this level of steepness in

the sigmoidal function.

D.4 A Proof Relating to Synthetic CFM and Chapter 2

Recall from section 2.4 that for a given input X the classifier's discriminator generates C output activations

gi (X 10) .... ,gc(X I1) and C corresponding discriminant differentials i1 (X 10) .... c(X 10). Since

different training examples of X are assigned different empirical class labels according to the a posteriori

probabilities PwIvx(Wr I X) ... PwIx(Wc I X), the expected value of the CFM objective function for X

is r-aximized when, by (2.94),

ox"= a [6.(XlO'),•',] - a[o,V',]
- = [-t5.(X1O •,] - a [0,

( ( 1) ( X ) " ! I v.P Ix ( w __ ( X ) ( X ) _ . , ( ) ) ( D .7 0 )

-OW- - PjVwx(W. IX) ), ( x - =oI;
AMCFM(X 10,

w(I) = W., s.t. 6(I)(XI0) = ,(XJO')

where W. denotes the class with the largest a posteriori probability, and 6.(X I 0) is the corresponding

discriminant differential. Recall that b I (X 90) is the discriminant differential associated with the classifier's

largest output; likewise, Wt(t is the class associated with the classifier's largest output. CFM is maximized

when the discriminator's largest output corresponds to the most likely class of X: equivalently, CFM is S
maximized when the discriminant differential associated with the most likely class is positive (i.e, when

6. (X 10*) > 0). Therefore, we simply wish to determine the upper bound on %', below which this condition

is satisfied via (D.70). The following equations lead to such a bound on V'. Although we would like to

motivate them with a concise intuitive explanation, this proves rather difficult. We advise the reader to rely

heavily on figure D.I (taking 6 in the figure to mean 6.(X 10") in the present context); refer to (D.10) -
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(D.46) when the figure fails to resolve the question.

If we assume that 65.(XI1') = 1#., = Vi, (i.e., it is the smallest value of 6.(X1O) for

which a [6.(XI9),t'J takes on its maximum value of unity - see figure D.I and (D.26)), then

I an O(X)* in(D.70) simplifiesto

o(x)- I - a [o, (',7

-- =O(x)- U [o,0 ] - a [-V,/,V']

Since 0" [0,'] < a* + r = a* + .7i1' and Or [-LV'] _ a (1 - :4

O(X)- > I - a* -. 7,' 1 - (k +.7) 1/D
-- 0(X)" - .7 i' + a* i (k /' + .7) '

where k = R. sin(Z 4 ) - R, 5 .3. Therefore, t is bounded from below:

=_____ > - I (D.73)

3- .3,2 + .7 i" " (.3 1/1 + .7)

This lower bound is tight for small l',. It is loose for -- I , since lim -(X)" I , whereas the

lower bound yields

lim - 0 (D.74)•"j.3 t,2 + .7 '

For smaller values of 0' the bound can be simplified to

-- O(X)- ." '43It"- = (D.75)

so that (D.70) is satisfied if

VY,1 > I - PWIX(W. IX) (D.76)
1.43 PwIx(W.-IX)

or

i' < 1.43 PiVVx(W- IX) (D.77)
I - PwIx(W). IX)

Thus, the requirement for learning the most probable class of X, stated in (2.94), is satisfied when (D.77) is

satisfied.

4These bounds on the value of synthetic CFM are readily verified by a visual inspection of figure D. I.
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D.5 Modifying Backpropagation for use with CFM 0

Any differentiable supervised classifier can use the CFM objective function to learn differentially. Since

neural network classifiers employing the backpropagation learning procedure [ 119, 1201 are a popular family

of differentiable supervised classifiers, we show how to modify the backpropagation algorithm for use with

CFM.
There are two fundamental differences between backpropagation with CFM and backpropagation with

error measures such as MSE:

"* For any given training example representing one of the C possible classes, CFM is a function of only

two discriminator outputs; error measures are functions of all C discriminator outputs.

"* CFM is maximized, whereas error measures are minimized.

Gradient computations - Recall from section 2.4, the CFM generated by a training sample S" of n

examples is given by

CFM (S"I6) = 1 ) (or [6,(x1 )(X ,,'] = UJ) , (D.78)
n j= I

0
where X' and W" denote the jth of n training examples and its associated class label. The discriminant

differential 6,(XJ 10) generated by the example X' having the class label Wi = UW, (Tr E {l, ...

is

b,(Xi10) = g,(Xj10) - max gk(XiO0) (D.79)

Thus, the derivative of O" [6,(Xi 10), 1/'] is non-zero with respect to only two outputs, y, and .''-

0(0
I , -[6,r(X'I1),V'] = Y

a[6,(Xe),]0 = (D.80)
----- 0r [6r(Xj10),'] 3,. = Tr D.0

0, otherwise 0

Figure D.9 illustrates the significance of (D.80) for a hypothetical classifier that learns via backpropagation

m~odified for use with CFM. The classifier has five discriminant functions, corresponding to the five classes

that the feature vector can represent. The classifier's parameters are shown as black arrows pointing towards

the discriminator's outputs, and the states of the classifier's nodes, given the example X1, are depicted 0

"1The notation 6 ,r s short-hand for 6, (X' 0) throughout this section.

0
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=Y /

01  V] 0X3  VN

xj

Figure D.9: A diagrammatic view of backpropagation with the CFM objective function. The classifier has
C = 5 output nodes, which correspond to its five discriminant functions. The classifier's input is the
N-dimensional feature vector, and the classifier has one hidden layer containing three nodes. The parameters
(i.e., connections or weights) of the classifier are depicted by black arrows. The figure depicts the state of the
classifier, given a particular training example Xi (darker nodes have larger values than lighter ones). The
classifier's CFM O" [64r, i:'J is a function of the discriminant differential 6,., which is a function of only

0 two outputs: the output y,. = )'4 corresponding to the input example's class label Wi (which is W34 in this
case), and the largest other output .y = Y2. Thus, the derivative of O" [6,. , ii'] is non-zero with respect to
outputs y,•. and •T only. The gray arrows pointing back through the classifier towards its input denote all
the resulting non-zero derivatives of V9 (O" [6•, i']) ), the gradient of CFM with respect to the classifier's
parameters, given the single training example/class label pair (X , WJ).

in grayscale (darker nodes have larger values than lighter ones). Since XA is an example of class W34 ,

y-= '4 . Likewise, since Y'2 is the most active of all other discriminator outputs, y = y'2- The discriminant

differential 6 r is therefore y'4 - y'2. Note that y > y,., so 6 r is negative and Xj is an un-learned

example (definition D.l |- i.e., the classifier has not yet learned to classify X ' correctly).

We denote the gradient of O" [6,(Xi I ) , '] with respect to the classifier's parameters 6 by

0)TaY
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V0 (or [6T(Xi10), t,]). Since only the derivatives -0-,O" [6,(Xi10),V'] and 0,Or [6•(Xi10),." ]

are non-zero, only the parameters associated with the second and fourth discriminant functions affect the

value of CFM for this example. Indeed, only those elements of V0 (o [ 1•.AJ 0), OP]) corresponding to

the parameters of the second and fourth discriminant functions are non-zero and need be computed. These

gradient computations are depicted by the thick gray arrows of figure D.9, which point back towards the

classifier's input. Note that once Xi becomes a learned example (definition D.2), 6,(X I 0) exceeds it..,

and the derivative of CFM with respect to all outputs is zero. Mathematically,

-o [61XJ10)' = 0 Vi iff ,(xj 10) > (D.8l)
03,i

When this is the case, no backpropagation computations have to be performed for X j. This characteristic of

differential learning via synthetic CFM results in substantial computational savings as an increasingly large

fraction of the training sample is learned (see section 7.5).

Steepest ascent search - Because CFM is maximized, we use a steepest ascent search for the optimal

classifier parameters:

O[k + I] = 0[k] + e Vq (CFM (s 81[kl))) + n -10[k - 11, (D.82)
IV 0 (CFM(S- 0 [k]))I

AIJjk] A0[•0

where k is an iteration index,

V7 (CFM (S" I O[k,)) V .• V9 (O [6, (XIl0[k]),•", : = WT) , (D.83)
n_ j=l

liVe (CFM (8" I 9[kI)) Ii denotes the magnitude of the gradient V7 (CFM (SR I 0[kJ)) and (V. A0k - I)

is the "momentum" term described in [119, eq. (9)]. Note that the steepest ascent algorithm of (D.82) differs

from the conventional error measure-based steepest descent form of backpropagation in two ways

* The sign of the step-size parameter F is positive for steepest ascent, but negative for steepest descent.

Again, this is because CFM is maximized, whereas error measures are minimized.

9 When a = 0 in (D.82), the search step size A0[k) has a fixed magnitude of E, since the equation

employs a normalized gradient term. This feature is essential to stable convergence ol the search

because CFM (8" 1 G[k]) , the CFM generated by the training sample at iteration k, can have a large

gradient and a large hessian on parameter space in the vicinity of its maximum. This occurs when
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11 '-M ctmhclnidecC paIrameter (i' is small (i.e., when the synthetic CFM sipmoid is steep). If a

111 1 .0otltlaii/ed gradient were used in (D.82), AO[k] could be very large, inducing a large search

slep precisely where the step should be small (i.e., where CFM (S" I [k]) has high curvature). See

sc'tion 5.3.6. for a simple, hypothetical scenario m which CFM has a large gradient anda large hessian

in paramcter space in the vicinity of its maximum.

D.6 Source Code for-the Synthetic CFM Objective Function

The U0lhtwing ANSI C source code implements the synthetic CFM function 07 [A, , describe above, along

with its firs• and second derivatives. The source code argument delta represents 4, and the argument

corif represents I'.

TiOIl(1' OF COPYRIGHT; Copyright 1992 by John Benjamin Hampshire 11.

Individuals may compile, copy, disteibute, and reuse this source code
with one restriction: this notice of copyright may NOT be removed.

The copyright holder disclaims any warranty of any kind,
expressed or implied, as to this code's fitness for any specific use.

Auth•r ~ J. H. Hampshire II:

3-14-92

Puries. Computes a synthetic asynnetric sigmoidal function cfm(delta, conf)i
-1 c- delta c- 1.
This synthetic function is used as the classification figure of merit (CFN)

in its IN-monotonic" form., described in J. B. Hampshire Ills Ph.D. thesis
of 1993 and Hampshire & Watbel, IMEE Trans. Neural Networks, June, 1990. The
S'discriminant differential'" delta is the difference between the
classifier output representing the correct class and the largest other output.
In the case that the classifier is a single-output one t2-class case), it is
necessary to express delta as a function of the single classifier
output. This isn't hard. but It requires a little care...

First and second derivatives of cfmtdelta, conf) are also computed.
The function has one 'confidence* parameter (the variable Iconf* in the
following code), In addition to its single argument.
The confidence parameter is on (0,1it low confidence corresponds to a steep
sigmoid (approaching a st•p function), whereas high confidence corresponds to
a nearly linear function of delta. 3ach call to cfatl, d_cfmtl. and dd_cfm().
checks to sea if the confidence parameter has changed since the last call.

If it has, cfmgetup() is called, and cfmt ) and its derivatives are
synthesized for the now confidence. following the re-synthesis,
cfmtdelte, eonf) or one of its derivatives is computed.
cfmgetupt) is computationolly expensive, but cfmo. d.efmt), and dd_.cfm(
are computationally cheaper than transcendental functions. Since the confidence
parameter is changed relatively infrequently, this synthetic function Is
on average very cheap to evaluate. The advantages of tho synthetic form
ovir closed-form functions described in the original CIPM paper are described

in detail in Cli- thesis.

* 310Je2 PhD thesis notes of 901114, 920314, and 920728.

fl~t' I.

r0 S
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Revision: 3-14-92 by JBH2. Although cfm(delta, conf) is, strictly speaking, defined only

on (-1.11 (corresponding to classifiers with outputs bounded on (0,11), the code

is written in such a way that is works (in practice) for any classifier with

outputs on the real number line. Since the theoretical proofs pertaining to the

optimality of CFM are restricted to a rather specifically bounded sigmoid, there

are no explicit guarantees if you violate the corresponding constraints on the

classifier outputs.

I've had no trouble with polynomial classifiers (as an example), but I can't be

sure that there isn't some failure mode when delta is outside 1-1,11.

7-28-92 by JBH2. Added second derivative function for use with modified

$include ýmath.h>

#include <stdlib.h>

#include <stdin.h>

#define Pi MPI /* 3.14158926... defined in /usr/include/math.h

#define TWOPi 2.0 * Pi

#define HALF-Pi M_PI_2 /* Pi/2... defined in /usr/include/math.h

#define INFINITY 1.0e25

#define TRUE I

#define FALSE 0

#define RN 0.7

@define A2 0.5
#define INV_Al 0.2

#define A0 -0.5

#define RP (-1.0 • AO)

typedef struct _MyPoint (

double x, y;
) MyPoint;

static double last.conf;

static double an, rn, xTnn, xTn, invap, bp, xTp, yTp, rp;

static MyPoint Un, Up;

* void getCfmBreakpoints(): Returns the values of delta marking the lowrr and upper boundaries
"of the synthetic CFM function's upper radius.

* Parameters: I lower bound of the synthetic CFM function's upper radius passed to

calling routine via

this pointer.

U upper bound of the synthetic CFN function's upper radius passed to
* calling routine via this pointer.

* Returns: nothing

* Notes &

• Latest

* Revision: 1-20-93 by JBH2. Added. There's no point backprop'ing on deltas that exceed

• the upper radius, since the synthetic function has zero slope beyond this

* point. This function gets called every time the confidence parameter gets
* changed, and it updates the bounds in the calling routine.

...........s.f.. 2 ...m.. .. . ......... ...................u.fl8*SSSUSS.St3 RUW.Utzt1tamtE nW/

void getCfmBreakpoints(l, u)

double .1, "u;

•=xT p.;

*u Up.x;
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return;

• void d-cfm): Returns the synthetic CFM function's first derivative wrt delta, given

delta and conf.

* Parameters: delta the classifier's output differential.

conf the CFM confidence parameter.

" Returns: the synthetic CFM function's first derivative wrt delta.

"Notes &
• Latest
* Revision: 7-28-92 by JBH2.

double====== ------------- -------- /
double dcfm(delta, conf)

double delta. conf;

double d_cfm, diff;

void cfmSetup(};

/1 1. don't allow confidence to go below .01 */

if(conf < .01)

conf = .01;

/* 2. if the present confidence isn't the same as the last one,

set up the synthetic function anew.
*/

if(conf I= lastconf)
cfmSetup(conf, &Un, &an, &rn. &xTnn, &xTn, kinvap, &bp, &xTp. &yTp, &Up. &rp);

/1 3. compute the value of the objective function I/

if(delta >= Up.x)
d0cfm = 0.0;

else if(delta > xTp)
diff = delta - Up.x;

d-cfm = -diff / sqrt(rp'rp - diff'diff);

else if(delta -= xTn)
d-cfm = 1.0/inv-ap;

else if(delta > xTnn)
diff delta - Un.x;

d_cfm =diff / sqrt(rnrrn - diffldiff);

else
d._cfm * an;

/* 4. stash the current confidence value, and return d-cfm

last-conf - conf;

return(d-cfm);

. f .......

" void dd-cfm(): Returns the synthetic CFM function's second derivative wrt delta, given
delta and conf.

" Parameters delta the classifier's output differential.

conf the CFM confidence parameter.
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* Returns: the synthetic CFM function's second derivative wrt delta.

* Notes &
* Latest
* Revision: 7-28-92 by JBH2.

double dd-cfm(delta, conf)
double delta, conf;

double ddcfn, diff, dtemp;

void cfmSetup();

/* 1. don't allow confidence to go below .01 / S
if conf < .01)

conf = .01;

/* 2. if the present confidence isn't the same as the last one,
set up the synthetic function anew.

if(conf != lastconf) 5
cfmSetup(conf, &Un, &an, &rn, &xTnn, &xTn, &inv ap, &bp, &xTp, &yTp, &Up, &rp);

/* 3. compute the value of the objective function /

if(delta >= Up.x)

dd_cfm = 0.0;

else if(delta > xTp)
diff = delta - Up.x;

dtemp = 1.0 1 sqrt(rp-rp - diff*diff);
dd-cfm = (-diff * diff * dtemp * dtemp - 1.0) dtemp;

else if(delta >= xTn)
ddcfm - 0.0;

else if(delta > xTnn)
diff * delta - Un.x;

dtemp = 1.0 / sqrt(rn'rn - diff'diff);
dd-cfm - (diff * diff * dtemp * dtemp + 1.0} * dtemp;

else
dd~cfm = 0.0;

/• 4. stash the current confidence value, and return dd cfm /

lastconf = conf;
return(ddcfm); S

* void cfmo: Returns the synthetic CFN function's value, given delta and conf.

" Parameters: delta the classifier's output differential. 5
• conf the CFN confidence parameter.

" Returns: the synthetic CFV function's value.

* Notes &
* Latest
* Revision: 3-14-92 by JSH2.

double cfm(delta, conf)
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double delta, conf;

double cfm, diff;

void cfmSetupl);

/1 1. don't allow confidence to go below .01 */

if(conf < .01)
conf = .01;

/* 2. if the present confidence isn't the same as the last one,

set up the synthetic function anew.
*/

if(conf != lastconf)
cfmSetup(conf, &Un. &an, &rn, &xTnn, &xTn, &invap, &bp, &xTp, &yTp, &Up. &rp);

/* 3. compute the value of the objective function /

if(delta >= Up.x)
cfm = 1.0;

else if(delta > xTp)
diff = delta - Up.x;

cfm = Up.y - sqrt(rp*rp - diff~diff);

else if(delta >= xTn)
cfm = delta/inv._ap + bp;

else if(delta > xTnn)

diff = delta - Un.x;

cfm = Un.y - sqrt(rnlrn - diff*diff);

else
cfm =an * delta + an;

I" 4. stash the current confidence value, and return cfm *1

last_conf = conf;
return(cfm);

)=

• void cfmSetup(): Recomputes all the necessary metrics for the synthetic CFM function,

• given the new confidence parameter conf.

• Parameters: conf the new CFM confidence parameter.

StUn the centroid of the function's lower radius.
* an the slope of the function's lower leg.

* rn the function's lower radius.
xTnn the value of delta at which the function's lower leg and lower

* radius are tangent.
* xTn the value of delta at which the function's lower radius and

* (middle) transition leg are tangent.
invv_ap the inverse of the transition leg's slope.

" bp the vale of delta at which the transition leg intercepts the

• horizontal line CFM ' 0.
• xTp the value of delta at which the function's (middle) transition
* leg and upper radius are tangent.

* •yp the value of CFM at delta - xTp.

* Up the centroid of the function's upper radius.

rp the function's upper radius.

* Returns: nothing

*t
* Notes &

•Latest
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" Revision: 3-14-92 by JBH2.

void cfmSetup(conf, Un, an, rn, xTnn, xTn, inv ap, bp. xTp, yTp, Up. rp)

double conf;

double *an, *rn, "xTnn, *xTn. °inv-ap. *bp, *xTp, *yTp, *rp;
NyPoint *Un, *Up;

static double fconf, angle, RR, angle_l, angle_2, anglej, angle-p;
static double zeta.n, 1, D. al, xO. yO, xl. yl, arg;

static MyPoint Tnn, Tn, U0;

static int virgin=TRUE;

/* phase I and 2 are computations are all constants, so do them only once.

if(virgin) (

* PHASE 1 I
......... /

angle_2 = atan(A2);
if(INV_A1 - 0.0)

angle-j = HALFPi:

else {

al = 1.0 / INV_Al;
angle-l atan(al);

/1 Notes of 920314, (1) /

angle_3 = HALFPi - (angle_l - angle_2) I 2.0;

/I Notes of o00314, (2) /

1 = RN / tan(angle_3); 0
/* Notes of 920314, (3) /

if(INVAl =- 0.0)

xO = 0.0;

yO = A2;

else
x0 - A2 I(al - A2); 0
yo - al * x0;

/I Notes of 920314, (6) /

arg = HALFPi - angle-l;

xl - x+ I * sin(arg);

yl yO + 1 * cos(arg);

I* Notes of 920314, (7) /

UO.x = xl - RN * cos(arg);

UO.y = yl 4 RN * sin(arg);

* PHASE 2

* .........

/1 Notes of 920314, (8) f

RR - sqrt(UO.x*UO.x + UO.yU0.y);

/* Notes of 920314, (Sa) */

angle s atan(fabs(UO.y/UO.x));

virgin F PALSE;

I..............

) •
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fconf = conf;

/* Notes of 920314, (11)/

*rn =RN * fconf;

zeta~n =RR * fconf;

Un-ý-x =-zeta-n *coscangle);

Un->y z eta-n *sin~angle);

/* Notes of 920314, (12?

*rp = RP * fconf;

Up-'x = -*rp / AO;
Up->y = 1 - *rp;

..........................
* HASE 4

1. Notes of 920314, (13) 1

1 - sqrt((Un->x + 1.0) * (Un->x + 1.0) + Un->y *Un->y);
D -sqrt(l11 - Irn * r)

angle..3 = atan(Un->yI(Un->x + 1.0)) - asin(Irn I1);

/* Notes of 920314, (14)/

*an - tan(angle..3);

1* Notes of 920314, (15) /

*xTnn - D . cos(angle..3) -1.0;

0 ~Tnn.y - D * sin(angle..3);

........................
* PH4ASE 5*

/I Notes of 920314. proceeding (16)

0*sqrtUIUp->x - Un->x)P(tp->x - Un->x) *(Up.->y -Un->yP*(Up->y U->y)
1*sqrt(00D - (*rp + *rn)*(rp + * n)

angle-3 - acos(1ID);
angle..2 = atan((tlp->y - Un->y)/(Up->x U->Ulx));

/* Notes of 920314, (16) */

angle~p - angle-.3 + angle_.2;

if(angle~p -HALF_.Pi)

*inv..ap - 0.0;

else
linv_ap - 1.0 / tan(ongle~p);

......................

* HASE 6

1an~otes of 920314, 418) 1

0 ang1*le. - angle..p HALF_.Pi;

*x1p - Up-2,x *4r * cos(angle-1);
YT Up->y 4* rp * min(engle....);

/* Notes of 920314, (19) */

*xn- Un->x - *rn * coo(angle..1);

Th~y - Un->y -*rn * sin(angle-1);

0/* Ntes of 920314, (19) 1/

if(angle..p -- HALF-Pi)
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"*bp = -INFINITY;

else

*bp = *yTp -*xTp / inv_ap;

return;



Appendix E

* Differential Learning via CFM Viewed
as a Generalization of Learning via
Rosenblatt's Perceptron Criterion
Function

In this appendix we explore the similarities between differential learning via the CFM objective function

and learning via Rosenblatt's perceptron criterion function [I 16]. We prove that differential learning and

perceptron learning are quite similar for the 2-class pattern recognition task in which the classifier has one

linear discriminant function. We begin the proof with a differential learning formulation of the task; we then

alter the form of the CFM objective function and complete the proof.

Since the pattern recognition task is a = 2-class task, we need a discriminator with only one

discriminant function g;(X 0 8): if g, (X J 0) is positive, the classifier labels X as an example of class W, ;

if gi(X 18) is negative, the classifier labels X as an example of class W2 . However, we assume a classifier

of the form described in section 2.2. 1, which obliges us to create a second phantom discriminant function

9 2 (X 10 ). This phantom discriminant function is related to gl(X 1O) by

* 2(XI ) = -gi(X1I) (E. l)

so that the resulting classifier's operation is described by (2.6) and (2.7). The two discriminant functions are

constrained to be linear functions of X. If we adopt the convention of 129, ch. 5] and define the augmented

feature vector X' as an (N + I )-element vector formed by preceding the original N-element vector with a

single element of constant unit value

359
0
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0 -__ _-___-

-. 0

0-1.0 0.0 1.0I5

Figure E.A: A classifier comprising a single linear discriminant function is equivalent to Rosenblatt's
perceptron when generated with this modified form of the CFM objective function.

X1= " (E.2).

XN

and we give the parameter vector 0 (N + I) elements, then the two linear discriminant functions are

described by

gi(XIO) =XT 6 
(E.3)

92(Xl1e) =-X ITo

(the notation ZT denotes the transpose of the vector Z). The discriminant differentials associated with

gI(X10) and 92(X 1) are therefore

6,(XIO) = g,(XO) - g2(XIO) = 2XTO
(E.4)

62(xle) = g2(XIO) - g1(XI6) = -2X'To

Recall from section 2.2.4 that the argument of the CFM objective function associated with a training

example is 6, when the class label of the training example is W,. Let us change the functional form of
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the CFM objective function from the sigmoidal function or [6, i.,] described in sections 2.2.4 and 2.4 and

appendix D to the piece-wise linear function

0, 6 >_ 0

01 (E.5)

illustrated in figure E. I. Under these circumstances, the average CFM for the training sample S" of size n

is, by (2.81) and (2.82),

CFM(S' O) - .,=a[((XiI9)] ,XJl9)= { Or (XuI1). ;, = 1 ),=

VxT19, W' = W, & XJ-T
1

9 < 0

_ 2 ,(X); 6,(Xi) = _x,,Te, i w 2 & xJ'T > 0 (E.6)- = 1 nj 
== U

0, otherwise

Maximizing CFM (S" 19) over 0 is equivalent to minimizing -CFM (SRI 9) over 6

max CFM (S" 19)

-Xj'T@, Wi = W, & X' 09 < 0

min 2 (V,(X); 6,(X) = Xr1"i ,2,gxjT1 0 (E.7)

0. otherwise

Rosenblatt's Perceptron Criterion Function

Equation (E.7) is - but for a constant - identical to Rosenblatt's perceptron criterion function (cf. (12) of

129, ch. 5]). Thus, differential learning via CFM can be viewed as a generalization of the perceptron approach

to discriminative learning. The generalization is four-part:

1. Learning is extended from the 2-class pattern recognition task to the general C > 2-class task.

2. The functional form of the classifier's discriminant functions need not be linear. The removal of this
restriction allows differential learning to be applied to any differentiable supervised classifier (see

table 2.1 for some examples).
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3. The functional form of the CFM obje•,tive function, described in sections 2.2.4 and 2.4 and appendix D,

guarantees that the classifier will be asymptotically efficient (the focus of the entire text). By the proof

of section 2.4, the functional form of Rosenblatt's perceptron criterion function (represented as a CFM

objectivc function in figure E. I ) lacks the sigmoidal shape necessary f,, engendering minimum-error

discrimination. When the number of classes is greater than two and/or the class-conditional densities

of X overlap (i.e., the concepts to he learned are stochastic), differential learning via the perceptron

criterion function of figure E. I is provably not asymptotically efficient; differential learning via CFM

is.

4. If the class-conditional densities of X (C = 2) are linearly separable, the linear discriminant

generated with the perceptron criterion function is guaranteed to separate the two classes of X. The

differential learning guarantee associated with the (C > 2)-class X having potentially overlapping

class-conditional densities is analogous, albeit considerably stronger: the differentially-generated

classifier is guaranteed to yield the lowest error rate possible,' given an asymptotically large training

sample.

'The lower bound on the classifier's error rate is determined by how well its discriminator can approximate the Bayesian discriminant
function. Thus. when we state. "the lowest error rate possible.' we mean the lowest possible given our particular choice of discriminator,
not the lowest possible given anrY choice of discriminator.



Appendix F

Proper Parametric Models of the
Homoscedastic Gaussian Feature
Vector'

In this appendix we replicate two proofs: the normal-based linear discriminant analysis paradigm is the

Jidly-parametric proper model for the feature vector X with homoscedastic Gaussian class-conditional

pdfs; the logistic regression paradigm (a.k.a. logistic discriminant analysis) is the partially-parametric

proper model for the feature vector X with equal class prior probabilities and homoscedastic Gaussian

class-conditional pdfs. The first proof can be found in any introductory textbook on probability and statistics,

since the fully-parametric model learns by computing the maximum-likelihood estimates for the means and

covariance matrices of the feature vector's class-conditional pdfs. The second proof has been worked by

Akaike and White 12, 140. 142, 1411 and by Hjort.2

The proofs require that the class-conditional covariance matrices are all of the form o2  I. where I

denotes the identity matrix. Under a simple linear transformation, a feature vector with homoscedastic

Gaussian class-conditional pdfs that are not of this form will be transformed to one with class-conditional

pdfs that are of this form. We assume such a transformation has been performed without loss of generality.

Given this assumption, the homoscedastic restriction on the class-conditional pdfs of X ensures that

class boundaries on X are piece-wise linear because all the class-conditional covariance matrices have

orthonormal eigenvectors and eigenvalues that all equal o2.

'A homoscedanic feature vector's class-conditional probability density functions (pdfs) all have the same covariance matrix.
2 Hjort's proof is contained in 1651. which we have not otlained; the reference is mentioned in 168, pg. 1691.
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F.1 The Fully-Parametric Proper Model

Consider the N-dimensional feature vector X with Gaussian class-conditional pdfs:

Pxli.(X.,,p~,,•T) = I2~ exp (X- _ji)T) Z (X - i_&)1 (F.1)(2r)l lI ll, 1 -2

As described above, we assume that X is homoscedastic, and - without further loss of generality - that

it has undergone a linear transformation such that all its class-conditional covariance matrices are given by

0.2 .Under these conditions, (F. I) reduces to

PXV(XIW Ao r (27r)• N exp (X - -')T (F.2)

By Bayes' rule, the a posteriori class probabilities of X are given by

PwIx(W IX,.Pi,2) = P 11V(X Iwk Ai, 0 2 ) . Pw(W&)

EC px 11V(XjlU )k,pk,0" 2)k= Pw ( WO) :4

In the form of (2.27), let

SI Wj = Uji
WI WI )' ))=(1P.5)

( I0, otherwise 4

If we view the right-hand side of (F.4) as the basis for the likelihood equation, given the training sample

of n independently-drawn training example/class label pairs S" = { (X' , ... (X", W ") ), the

log-likelihood equation is

'In(l [iII (H x, , ,#(x ,,;,2,i) . P)(X) 4

EC [r,((Xi,•,V)) . In (,°(w,,,)) + In (xX I t iV j . ,.ii. aM)))]

C [ . ('v)) In (Plv(W,)) - In ((27Tyý) - N . In (V72) '] (F.6)
Z 1Tr,((x'J.")). F6
E_- . (x - #,)T (X --- ),

i= I 2m2
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where Xj denotes the jth example of X in the training sample, W1j denotes the class label of Xj, #ij

is the maximum-likelihood estimate of the class-conditional mean Pi, and a 2 is the maximum-likelihood

estimate of the variance parameter a,2.

• Setting the gradient of (F.6) with respect tc {If-. ... . , ar2 } equal to zero and solving the resulting

normal equations gives us the maximum-likelihood parameter estimates

I= - 7 i((X',Wj)) Xj
(F.7)

o.U2 _ T,((X ,VI)). (Xj -_i) T (Xj - ji 1).

i=1 j=I

where ni denotes the number of examples in S' with the class label Wi. These estimates are used in (F.4),

along with sample-based estimates of the class prior probabilities {Pwv(W1), ..... Pv(Wc)}, to produce the

the fully-parametric proper model of X. The process is commonly called normal-based linear discriminant

analysis (e.g., 191]).

F.2 The Partially-Parametric Proper Model

The a posteriori class probabilities in (F.4) can be expressed as follows:

P.Ix (Wi I X, /i, 02 )

+ P~& ep -(p~ - A.k)X + Ia (ILi~ ikJ.kT (F.8)

F.2.1 C = 2: Logistic Regression

When C = 2, X represents one of two classes. If both classes have prior probabilities of the a posteriori

class probabilities of X are

PwIx(LA I,/l ,XP1O'2)

[I p T2X (P2 Ij.~ iS 21A2)] (F.9)
= -(T r 13T
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and

PIVIx(W2 X,A 2, 2 )

= I P1V1Xx(W1X,/'tt1 ,a 2)

+ exp T2 A2 - - X- 1 -112)]] (FO)

[ at 3 i

Note that the N-dimensional vector a and the scalar /3 can be viewed as the ultimate parameters of this

partially-parametric model, so we can make the following equations:

PVjx(W, IX, p,, 2 ) Pvix(W, IX,a,/3) [ [1 + exp['&X +/3]

PIVlx(W32IX,I/ 2,c 2) = PIx(WO2 IX,a,I3) = [I + exp [-aTX -

When the method of maximum-likelihood is used to estimate the parameters a and 13, it is modified

to maximize a product of independent a posteriori class probabilities rather than a product of independent

class-conditional pdf terms. Maximizing the logarithm of this product is equivalent - a procedure called

maximizing the logit of risk 183, pp. 80-82). The model of (F. I1) is, by definition 3.13, a partially-

parametric proper model of X. Assuming n independently drawn training example/class label pairs

m= {(XI ,W 1). (X" ,W,")} the logit risk function is (e.g., 168, pg. 9])

L (ii, 3) = In (P) Vix (WO I X j , i J) PVX(, Xj, &,.73)) ))

- 7- 1((X),Wj)) .In(PlWiIJ&C)

÷*•((X', j)) - In (PW,•(L0XIj,,,a )] , (.12)

where ri((Xi' Wj)) is given in (F.6), and i and I denote estimates of a and /3. Equation (F.12) can

be differentiated with respect to its N + I parameters in order to generate normal equations. The resulting

equations are non- linear with respect to the parameters, so they must be solved iteratively. We omit the

normal equations because they are not essential to our argument; see 1681 as an example of such details.

If we view the estimated a posteriori class probabilities in (F. 12) as discriminant functions, and we use •

the notation 0= {a,/i},then -t
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gi(X l6) = P)w.x(WIXj,&,,') (F.13)

and (F. 12) can be re-stated as

9R
L(au3) = [ri,((X,Wj}) , In (g1,(Xj1)) + T2((X,,W)) - In (g2 (X 0))] (F.14)

j=I

The reader should recognize that this form of L (&,,13) is (but for a constant factor, cf. section 2.3.2)

the Kullback-Leibler information distance [82, 81] of the training sample, given the discriminant functions

g, (X 10) and g2(X 1 0). Thus, the maximnon-likelihood parameters of the logistic regression model are

obtained by minimizing the Kullback-Leibler information distance between the training sample and the

discriminator 9(X10) = {g9(X10).g2(X10)}, where g,(XI1) is given by (F.13). By the proof of

section 2.3.2, this learning strategy leads to the following parameterization for large training sample sizes:

S= = -, 2 P

lim (F.15)

1~ 3 = -2'I (110 - IA'2P2)

F.2.2 C > 2: Logistic Discriminant Analysis

If the class prior probabilities are all equal, then (F.8) simplifies to

0
PwIX (Wi I X, li, 02)

S[i + • exp (Pi - p)AX + -2(u i- - A'kik) (F.16)

When C > 2, (F. 12) assumes the more general form

L(&,.... ac,, 3.1 .c) --

I c ( T ,((XJ w')))
In (P'?xU" ~j&'i

-" i r(xj'wj))" -in (PNIX(Wi I X j Ia .3i))] (F. 17)

j= I i= I

j:0
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A single logistic discriminant function of the form

gi(XI1)= [ + exp + (F.18)

is used to model each of the C a posteriori probabilities of X. In order for gi(X 10) to be a reasonably

good approximation of the a posteriori probabilities given in (F. 11), each class conditional mean /ii must

have only one neighboring mean (which we will denote by pi, ) closer than about 3a. Under this condition,

each class-conditional pdf of the feature vector has only one close neighbor. That is, each class is confusable

with only one other,3 and the ith a posteriori probability of (F. I I) is reasonably well approximated by the

logistic function

P).lx(W I I X, P'i, A 2)

+ xp X X + I TW i -- T (F. 19)

By the same arguments as those of the preceding section, Q(XI10) .gI(X1), gc(X 10)} will 0
be a reasonable approximation to the proper parametric model of X. If the model learns by minimizing

its Kullback-Leibler information distance with the training sample, the resulting parameters {(a .. 'ic}"

and {131 ... c } will be maximum-likelihood estimates of their true values:

ai = ai = (Pi,- ti)

lim (F 2(h
f 3, = = --27i(Wi )

F.3 The Asymptotic Relative Efficiency of Logistic Discriminant Anal-
ysis Versus Normal-Based Linear Discriminant Analysis

Efron studies the asymptotic relative efficiency (ARE) (see section 3.6. 1) of the fully- and partially-parametric

proper models for the homoscedastic Gaussian feature vector in [30]. We remind the reader that normal-based

linear discriminant analysis is the fully-parametric model and logistic discriminant analysis is the partially-

parametric model. Efron's definition of ARE is based on the ratio of the fully-parametric model's error rate

to that of the partially-parametric model. Our definition of ARE (definition 3.18) is based on the ratio of

-'We subjectively characterize two class-conditional pdfs as "close" neighbors if their means are separated by less than three standard 0
deviations. If we were to set a more rigorous standard for closeness - say, five standard deviations - the approximation of (F. 19)
would he so much the better.
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one classifier's MSDE to another classifier's MSDE: we generally assume the two classifiers differ only in

terms of the learning strategy they employ, although a simple notational generalization of definition 3.18

allows for a comparison of classifiers with different hypothesis classes. Our definition therefoce has a similar

philosophical motivation to Efron's, but it focuses on a comparison of MSDE (squared discriminant bias

plus discrininant variance), whereas Efron's definition focuses only on a comparison of discriminant bias.

These differences notwithstanding, Efron's work proves for the C = 2-class case, (fully-parametric)

normal-based linear discriminant analysis is more efficient than (partially parametric) logistic discriminant

analysis. A similar analysis of the C > 2-class case can be found in [191. The reason, stated in intuitive

terms, is that the fully-parametric paradigm is a more constrained model of the data, despite its having more

parameters. The class-conditional means are explicitly modeled in the fully-parametric paradigm, whereas

only the difference between these means is modeled in the partially-parametric paradigm. The higher degree

of specificity in the fully-parametric proper model makes it more efficient by Efron's definition; again, by

our definition of discriminant efficiency, Efron's work proves that the fully-parametric model exhibits lower

discriminant bias than its partially-parametric counterpart: no statement is made concerning discriminant

variance.
The greater specificity of the fully-parametric model is an advantage when it is indeed proper (i.e.,

when the assumptions regarding the probabilistic nature of X are valid), but it is a disadvantage when

the model is improper. Specifically, the fully-parametric model described in this appendix is proper only

for homoscedastic Gaussian-distributed feature vectors, whereas the partially-parametric model described

herein is proper for a much broader family of homoscedastic exponentially-distributed feature vectors (e.g.,

[83]). Thus, if the feature vector is exponentially-distributed rather than Gaussian-distributed, the partially-

parametric model will be proper (and efficient), whereas the fully-parametric model will be neither proper

nor efficient. This phenomenon leads us full-circle to the arguments of chapter 3: if we assume that the

feature vector is arbitrarily-distributed, then neither the fully- nor the partially-parametric model is proper,

so the most efficient classifier possible, given the improper logistic linear hypothesis class implied by both

0 parametric models described herein, will be generated by the differential learning strategy.

F.4 The Proper Parametric Model Constraints are Severe

* Given the preceding insights, the choice of learning strategy hinges on whether the model of the data is

proper. In order for the (fully-parametric) normal-based linear discriminant analysis paradigm to be a proper

parametric model of the C >2-class Gaussian feature vector X, the class-conditional pdfs of X must be

homoscedastic.
In order for the (partially-parametric) logistic discriminant analysis paradigm to be a proper parametric

model of the 2-class exponentially-distributed feature vector X, the two class-conditional pdfs of X must be

homoscedastic and the class prior probabilities must be equal. In order for the logistic discriminant analysis



370 Appendix F: Proper Gaussian Parametric Models

paradigm to be a proper parametric model of the C >2-class exponentially-distributed feature vector X, all

the class-conditional pdfs of X must be homoscedastic; furthermore, no class-conditional pdf can be a close

neighbor in X of more than one other pdf, and the class prior probabilities must he equal.

These constraints on the form of X are strong, and in reality they rarely hold. When they do hold, it is

usually in the context of a deterministic feature vector that is corrupted by independent additive Gaussian

noise with these nice properties. The resulting "random" feature vector can be modeled quite well by

either of the proper models described herein. Classical hypothesis testing procedures (e.g., see 1140]) can be

employed to verify whether or not the models are indeed proper. Unless the proper hypothesis is confirme'd,

both of the parametric models described herein will, by the proofs of chapter 3, be both improper models and

inefficient classifiers of X.

.,-

S

S

0



Appendix G

0 Error Rate Computations for the
Classifiers of Chapter 4

Recall from definition 3.1 (page 55) that the true error rate Pe (! 1 0) for the classifier of x is given by

P,(CIo) g E[P, (C(xIB)) / P,(Q(x10)) p1 (x) dx, (G.l)

where

Pe (Q(xIa)) - I - PIw*k(D('P(x O1) lx)

I = I - Pwwi. (r(!g(x1))1x)

and 'P (.xO) = r((x 10)) denotes the class label that the classifier assigns to its input x. The error

rates that we quote in chapter 4 - for both the proper and improper parametric models - are computed
according to (G. I) because we play the role of an oracle and we know the probabilistic nature of the feature
x. The following two sections outline the procedures we use to do the computations.

G.1 Error Rate Computations for the Proper Parametric Model

The fully-parametric and partially-parametric models of section 4.2 form one and only one class boundary
on the domain of the homoscedastic Gaussian feature x. The boundary for the fully-parametric model is, by

(4.8),

2 (G.3)
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where i/i and i-, are two of the three model parameters. The boundary for the partially-parametric model

is, by (4.12),

L31,2 Partialty.Paranwtric" -01,0 (G.4)

01,1

where 01,o and 01,, are the two model parameters.

The error rate of both models can be expressed in terms of the class boundary 131,2. All examples of

class W03 having values of x greater than the boundary are misclassified, as are all examples of class W02
having values of x less than the boundary: mathematically,

P'(9Io) = Pl(w)) e 2 x _111)2]

+ P) (W2) / -exp (x - 12)]2 dx, (G.5)

Plw(J 032)

The integrals in (G.5) are easily computed via the Chebyshev approximation to the error function (er f) 106,

sec. 6.21.

G.2 Error Rate Computations for the Improper Parametric Model

The error rates of the polynomial classifiers in section 4.3 are evaluated in a crude but computationally

simplistic fashion. Since the high-complexity classifier can, in principle, form many class boundaries on the

domain of x, we compute the integral of (G.I) numerically, using a successive approximation technique.

This saves the trouble of computing the class boundaries - essentially a polynomial root-finding task -

and then evaluating the integral as in (G.5). Given the specific probabilistic nature of x in section 4.3, the

classifier's error rate is expressed as

P,(C1o) ( 1-0r,(D(x )) pfw (x IWI) Pw(Wi) dx
0.05

+ -7-2 (E) (Xt1)) (X* (xI 2) P),(W2) dX
0.1
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+ -, 3 (V(x7o) px(, (xIW4) Pw(W.) dx, (G.6)

0.05

where

0, E) (x 0) = Lw,
-,(9( I o)) = =(G3.7)

I, otherwise

Again, D (x 0) denotes the class label that the classifier assigns to its input x. We use the following

0 numerical quadrature approximation for each of the three integrals in (G.6):

I -ai (D (xl1)) P.,Iw (xIWi) Pw (W I(dr P(e
b- -i 7.((a+ .j / (b-a) -ab -a --1 T ,"r, (j 1 110)) p.,iw(a+ (j+ 1) .,= b Iw,W) PW(UWi)

j=0
(G.8)

We begin with M = 30 intervals, and double M until subsequent approximations differ by less than 10'.

This numerical integration technique is equivalent to the trapezoid rule (e.g., [20, sec. 4.3]) as M grows

large. It is admittedly crude, but it is trivial to implement and provides sufficient precision for our purposes.
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Appendix H

* Asymptotic Parameterizations for the
Probabilistically-Generated Improper
Parametric Models of Chapter 4

0

We generate improper parametric models in section 4.3 by minimizing the mean-squared error (MSE)

between the discriminator output vector Y and a corresponding target vector denoting the class of the
40l training example (see section 2.3); the minimization is done for all examples in the training sample, and

generally takes the form of an iterative search procedure. We employ backpropagation, a well-known

probabilistic learning paradigm; its iterative search procedure is gradient descent, and the gradient of the

classifier's MSE with respect to the parameter vector 0 is computed by the chain-rule [ 119, 1201.'
* We denote the training sample of size n by S., and we denote a particular unique value (or pattern) of x

by x.. If there are P unique patterns in S' , and for each of these patterns there are np,i examples belonging

to class Wi, the sample MSE of the classifier Q.(x. 1) = 1g, (x 10), ... gc (x 10)} with parameterization

0 is given by

MsE (Sm 16) = • "- [(•x,( 6)_- 1)2. P-•'- + (g(x 1  "10))2  
- "] 2

1=1 p=l n lip J
(H.1)

Enp,1 = It
p=l

Recall that C denotes the total number of classes that x can represent. In the case of the random variable

x in section 4.3, C = 3. It is straightforward to prove that the classifier's MSE can be expressed by the
following expectation as the training sample size grows asymptotically large (see section 2.3.2):

1 Backpropagation generally employs MSE. although other objective functions can be used. We employ only the MSE objective
function for probahilistic learning. The CE objective function, for example. cannot be used because the polynomial classifier's outputs
are unbounded; this violates the conditions necessary for using CE (see section 2.3.2).

375
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lim MSE(S"I0) = E,[MSE(x10)I =

S./_' [(g,(x 1) - ) P0 ' ,(cN , Pi I x) + (g,(x I 11)) .1 , (-WA IX)] p,(x) Ji (H.2)
i= I

where the notation E, [ • denotes the expectation over the domain of x, and

NI,,., (--,lx) H I - PIVI, (L', I .X) (H.3)

The parameterization 0' that minimizes the classifier's MSE can be found by substituting the ex-

pressions for the classifier's discriminant functions into (H.2). deriving the expression for the gradient

Ve (E. [MSE (x I (x 10'))]), setting this gradient equal to the zero vector, and solving the resulting

normal equations for 09". Barnard and Casasent use this technique for deriving the minimum-MSE param-

eterization of a linear classifier, given a 2-class Guassian feature [6]. We derive distribution-independent

expressions for the asymptotic minimum-MSE parameterization of the ith discriminant function gi(x 1 6)
in (H.2); expressions are given for constant, linear, and quadratic discriminant functions. Distribution-

independent expressions for the minimum-MSE parameterizations of higher-order polynomial discriminant

functions become cumbersome, so we derive the minimum-MSE parameterization of the high-complexity

classifier (i.e., the MSE-generated "10-10-10" model) in distribution-dependent form. We use the proba-

bilistic nature of the feature x, described by (4.28) - (4.29).

The polynomial discriminant functions of the improper parametric model are described by (4.32). Since

no polynomial discriminant function in (4.32) shares parameters with another, we can minimize the MSE for

each discriminant function independent of the other discriminant functions. The operative equation therefore

becomes

lim MSE(S"jg,(xjO)) = E,[MSE(xjj,(xjO))] =

J•. [(gi(xiO) - I)2 . Pw., (W,Ix) + (g,(xjO)) 2 . Pwj, (-,la Ix)] p,(x)dx (H.4)

If the ith discriminant function has Ki parameters, we derive that many normal equations of the form

d

d E. [MSE (x I gi(x189))]

df.. [(,i(XI 1) - ")2 Pwi (w1 Ix) + (gi(x 10))2" PwI (-•W I x)] p,(x) d&
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j [2(gi(x 10-) 1.) . d g( ~''('ix

+ 2 g,(x, 1 0-) d-- g,(T 0" P)- PVII (-,w, (x) dx

S--0 (H.5)

(where WA. denotes the kth element of the parameter vector O" that minimizes the MSE of the ith

discriminant function) in order to solve for the minimum-MSE parameterization e*.

H.1 Distribution-Independent Expressions for the Parameterization of
Low-Order Polynomial Discriminant Functions

When the discriminant function in (H.4) is a constant, i.e.,

gi(xi1) = Oi,o, (H.6)

we denote the value of the parameter that minimizes E. [MSE (x I gi(x 0))] in (H.4) by 0'0 . Substituting

(H.6) into (H.5), we obtain the single normal equation:

d E.,[MSE (xjgj(xj O'))]
d 6i'o

d • . P)2 , (W lX) + (,2 P wxp() d-
d Li'o . o- .x) ()

/ [2 (0•o - I) - Pw1., (WiIx) + 20o Pw* ('-.ix)]

= 2 (0*,o - Pw(Wi))

= 0 (H.7)

Thus

0o = Pw(W,) (H.8)

When the discriminant function in (H.4) is a linear function of x, i.e.,

g,(x01) = Oix + Oi,o, (H.9)

the two normal equations arc given by
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d-- E, [MSE (xjgj(xl e'))]
do

d (Wit I")+(, "

d [(,x + 0o- - W) . (W x) + (,x + 0)2. PwI .(--WiIx)I p,(x)dx

0, (H.10)

(k = 1, 1). Expanding and solving them in the manner leading to (H.7) yields the following MSE-minimizing

parameters: 2 0

0 -'I [MI (x ,- W) PiV(-'Wi) - mI (x, --LAi) ) Pw(UWi)] I•i.'
01 [m 2 x) PIV(W,) - MI,(x,W,) fM1,(10)

where

(,, I m 2 (x) - (MI (x))2

mj(x,W) W Ex [(x)Jil W] Pwv(W,)j

Cmj (x, -- i) •= Z m~,~)(H. 12)

A'=

k~ii
(.

m (x) W Ex [(x)j = Z E, [(x)/I Wl . Pw(Wi)
k=1

When the discriminant function in (H.4) is a quadratic function of x. i.e.,

gi(rt1) = 0i,2 (x) 2 + O6, x + ilo, (H.13)

the three normal equations are given by

dE. [MSE(xjI•(xjI6))] =

d6,, / ~(6i,2 (x) 2 + O,, x + 0,,o - 0)2 PWIr (Wi IX)

+ (O,2 (x) 2 + 0,,I x + e,,o)• ewI' (_w, Ix)] p,(x) dx

= 0, (H.14) 0
2 Equation (H.5) reptesents a distribution-independent multi-class generalization of a result for the 2-class Guassian feature in [6].



H.2 Distribution-Dependent Parameterization Expressions 379

(k = 0, 1 ,2). Expanding and solving them in the manner leading to (H.7) yields the following MSE-

minimizing parameters:

0i'2 = [Pw(L)[(M2 (.1))2 - m (x) M3 W()]

+ M 2 (X,W r) [(M I (x)) 2 
- M 2 (x)]

+ mI (x,W) • M3 (x) - m, (W m 2 (x) ] / (,,2

= [P(WL) OO [ M x) I M4 (x) - M 2 (C) • m.

+ m 2 (x,.,) [ml (x) -3 W (x) M m2 (x)W (H.15)

+ MI (xWi) [(M2 (X))2 - Mn4 (x),] /

0* = [Pv(W1 ) [(mI (x)) 2 - m2 (x) m4 (x)]

+ M 2 (x,WO) [(i 2 (x))2 - Mn, (x) •m (x)]

+ MI (x,W) inm (x) • T14 (x) - M 2 (x) -•. rW) (i,2

where

(i,2 =( 2 (x))W + (M3 (x)) 2 + M 4 (x) [(MI (x)) 2 - m 2 (x) - 2 mI (x) m 2 (x) m. (x) (H. 16)

The jth moment of a uniformly-distributed random variable with lower and upper bounds of I and u is

* W = I I -(W)+' (H.17)( -I+ [(+ I ( I

Using (H. 17) and (4.28) - (4.29), Equations (H.8) -- (H. 16) can be evaluated. The resulting values for the

minimum- and low-complexity polynomial classifiers of the homoscedastic uniformly-distributed random

variable in section 4.28 are given in the top and middle entries of table 4.1 (page 104).

H.2 Distribution-Dependent Expressions for the Parameterization of
Polynomial Discriminant Functions

The preceding distribution-independent, minimum-MSE parameter expressions are cumbersome. Fortunately,

the piece-wise constant nature of the class-conditional pdfs and a posteriori probabilities of x (see figure 4.9)

allow a straightforward expansion of (H.5), by which compact expressions for the minimum-MSE polynomial

discriminant function parameters can be obtained. Equation (H.5) can be re-stated as follows:
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dd=E [MSE2 (g,(x1g 0') -1))] (

fX d
- 2 (g(xl 10) - I). gi(x 0) . Pvv(Wj,). p,,iw (xlW,) dx 9

+2 •3 g,(xl1') •j--•.g,(xI6') •Pwv(Wi) •Piw (xl•W) dx

ho i

= 0 (H.18)

Using (4.28) and (4.29). we can express the kth normal equation for (he three polynomial discriminant

functions thus (dropping the factor of 2):

ddE,; [MSE (xjg,(xlO'))]=
d Ol,k

.05 (gi(Xl1) - I) . d g,(xI6)dx

+ 4. gI•-9) .dgl(xlo)dx
4, d .~

+.05 g, (x O1) -, g,(xlO )dx• 3.8Udol,k 
•

=0 (H.19)

d _dE, [MSE (xg12(xe1))] -

J -3.8 d

.05 g2(xl10). d- 92 (X10*l)dX

S.4 (g2(x )- I). d 02k2(X

5,s d

+ .05 . 9 g2(xI@*) ' 2 (x I ) dr

=0 (H.20)

0
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dd
d- E, [MSE (x Ig.i(x 10'))]

dO V,

.05 g 3(xlO*) -d 1) dx. g58d .v ('lO)d

+ f. g.A(xlo-) • 0 g.i(x 10 ) dx

+.05.J. (g3(xlO*) - ).d -- g--g.(x10') dx
r 3,A

= 0 (H.21)

We use the normal equations of (H.19) - (H.21) to solve for the minimum-MSE parameterization of the

high-complexity polynomial classifier. Since there are three 10th-order polynomial discriminant functions,

there are three sets of ten equations with ten unknowns. The resulting 10th-order parameters are listed at the

bottom of table 4. 1, page 104; they were computed from the normal equations with Mathematica.1

-Mathematica is a registered trademark of Wolfram Research, Inc.
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Appendix I

Monotonic Fractions Generated by
Three Error Measures

This appendix supports section 5.3; it contains derivations for the monotonic fractions of discriminator

output space generated by the mean absolute error (MAE), mean-squared error (MSE), and Kullback-Leibler

information distance (CE) objective functions. All derivations are performed for the discriminator output

space Y = [0, 1] C, rather than the more general space Y = [1, hic. This is done to simplify the notation.

In the case of the MAE and MSE error measures, the derivations for Y = [0, lJ] yield results that are

identical to those for the more general space, owing to the scalable properties of the MAE and MSE objective

functions. In the case of the CE error measure, the derivations for Y = 10, lic yield results that are

not identical to those for the more general space, owing to the non-scalable properties of the CE objective

function. Unfortunately, the CE derivations for Y = [1, hic are tedious, so we limit ourselves to treatment

of the space Y = [0, 1 ]c . These specific results are qualitatively representative of those for the more general

space, as long as I and h are finite - a constraint that is consistent with (2.60).

As in section 5.3, we assume that y, is always yv in order to simplify notation further.

1.1 MAE Monotonic Fractions

Assuming -,D = I = 0 and D = h = I , (5.37) and (5.38) ensure that an example of W.I is correctly

classified if MAE < I , such that

C
yg > 1(1.1)

j=2

Thus, we can compute the monotonic correct fraction of discriminator output space MAEC.F,•.,(C) by

using (1. 1) to set the limits of integration for the C-tuple cardinality (i.e., volume) integral thus:

383
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MAEL ,o~o(C) .. ./ dye ... dy2 dy'i

" - I integral terms

= "/ " Yt-Y - c- dy-t "

C-11

-/ " ) j=2

= ~ - = • - c- Xi -4'c-1 ... 421

2C'-2-

2... y - . d- 2 ." dy.10 "1y j=2

= - • - .._ ] dyC-3 2..
fo f" j=2 d'- . Y

I I.,_F - .

__ __ I (1.2)
C! r(C + 1)

Assuming -,D = I = 0 and D = h = 1, (5.33) - (5.36) ensure that an example of W, is incorrectly

classified if MAE > C -I:

c

l-y, + y E C-I (1.3)
j=2

Equivalently,

C

Y3 < 1 Yj - (C - 2) (1.4)
j=2

If we let Y,. = I - Yj, (1.4) can be expressed as

.] 0
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Y-> • b(1.5)

j=2

Thus, we can compute the monotonic incorrect fraction of discriminator output space MAEI..,,,O(C) by

using (1.5) to set the limits of integration for the C-tuple cardinality (i.e.. volume) integral in precisely the

same manner we use (I. I) to set the limits of (1.2):

., 0-

MAE IY,, ,,,(C) .dy' ... dy'2 dy'j

C - I integral terms

- (1.6)

C'! r(C + I)

Recall from (5.30)

MýF = Iyo,,o + C .mono, (1.7)

so, by (1.2), (1.6), and (1.7),

MAE I.F,,,.((C) - -
C! - (C + l)

*I _ _

MAECY.,.,,,,(C) C- = ; C > 2 (1.8)C! F(C + 1)-

2 2
.MAE.M '(C) - -C:! r(t: + 1)

Thus, (5.40) - (5.42) are derived.

1.2 MSE Monotonic Fractions

Assuming -,D = 1 = 0 and D = h = I , (5.52) and (5.53) ensure that an example of W, is correctly

classified if MSE < ; one point in Y generating this value of MSE occurs at

Y' = Y2 = ; = 0 Vk > 2 (1.9)

Thus, the lower bound on yj in (5.54) necessary to ensure that an example of LO, is correctly classified

reduces to
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2 Oo

/-=2

It can be shown that (1.10) yields an expression for MSEC.F,,,,,(C) that is equal to 2-1 times the volume

of the C-dimensional sphere with radius -L- , centered at the point Y,,, (recall from (5.3) that Yre,',

is, in the case of an example of W ,. the point at which y, = I and yj = 0 Vj i I).

Given the volume of C-dimensional sphere with radius -j2 [4, pg.41 1],

MSEC..m.......(C) = 2- 7 (1<Fq+ 6) (72=

E 8 01. 1)
rQK + i)

Assuming -',D I = 0 and D = h = I , (5.47) - (5.50) ensure that an example of W, is incorrectly

classified if MSE > c -i.

(I - '1) + O)(j) 2 > C - I (1.121
j=2

Equivalently,

3, I - (C-1)- _2 (1.13)
i=2

Equation (1.13) leads to a relatively complicated C-tuple cardinality (i.e., volume) integral for

MSEX.FN,,,o(C). We spare the effort of evaluating the integral explicitly by bounding it from above

as follows. Compare the condition for a surely MSE-misclassified example in (1. 12) with that for a surely

MAE-misclassified example in (1.3). Equation (1.12) defines the inner boundary - as measured from

Y,, - of the monotonic region of incorrect space, given the MSE objective function. Likewise,(l.3)

defines the inner boundary - as measured from Y,,,,, - of the monotonic region of incorrect space,

given the MAE objective function. In fact, the set of discriminator output states that satisfy (1.1 2) describes a

convex hypersurface. Each point on this hypersurface has a Euclidean distance from Y,-,,, that is at least as

great as that of any point on the hyperplane described by (1.3). As a result, the monotonic region of incorrect

space generated by the MSE objective function is always fully enclosed by the monotonic region of incorrect
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space generated by the MAE objective function. It follows immediately that the monotonic incorrect fraction

of discriminator output space generated by MSE is bounded from above by its MAE-generated counterpart:

MSET ........ (C) < MAE ZFT,.t (C)

MSEIFTo o(C) < (C I)(1.14)

Since the upper bound of (1.14) decreases super-exponentially with C. so does MSE IT,.,,o(C). By (1.7),

(1.1 I), and (1.14).

MSEIY,,O,,,,(C) < ( + 1)

F( +1)

MSE.MF(C) < +FT12.-. MSE,•-(C < r(!: + 1) + r 1 ) < r1(9 + 1)

Thus, (5.55) - (5.57) are derived.

1.3 Kullback-Leibler Monotonic Fractions

Assuming --D = I = 0 and D = h = , the CE expression of (5.62) reduces to

CE = -log6',) -I log (I - j), (.16)
j=2

The minimum value of CE generated by an incorrectly classified example of U), is, by (5.68), - log(A),

where A = I. Thus, the monotonic correct fraction of discriminator output space is described by the set of

points in Y satisfying the following equation:

log(J',) + l log (I - 3) < log(A) (1.17)
j=2

Equivalently,

• I * 1I (- ) <A (.18)
i=2
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Thus, we can compute the monotonic correct fraction of discriminator output space CECTn,,o(C) by using

(. 18) to set the limits of integration for the C-tuple cardinality (i.e., volume) integral thus:

CECY,,(L') =(C

. f I .-- dYc ... d 2 d(4 (1.19)

C - I integral ternm

Using the short-hand notation

BC-k = A .1" (1 - VA] (1.20)

j=2

we restate (. 19) thus:

CEC.F-.,m(C) =-

• I - BC."2

e 2 •O - Ic-...d ...

fi .IC-

= . .. 0 - I - e-i B"

= "'" Yc-i + Bc-2 In (I - Y'-i) dy'C-2 ... dyI/ 10
00= j-. i - Be-2 + B,-2 • In (Bc-2) dyC -2 ... dyl

I . I - Be-3 + BC-.3 • In (BB-c) - [2 dyC-.l ""

= I - .ZL' I-I [InIH)]y

j-0

= = 0,1, 11C, A •=4
(!.21 )

Thus, (5.70) is derived. 0
Assuming the more general -,D = I and D = h, the CE expression of (5.62) is
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0¢

CE = -log (vy - 1) - • log (h - Yj) (1.22)
j=2

* The minimum value of CE generated by an incorrectly classified example of W, is, by (5.68),

-c - loq(h - I) - log(,). where X = 1. Thus, the monotonic correct fraction of discriminator

output space is descnbed by the set of points in Y satisfying the following equation:

* log(.vI - 1) + Z Iog(h - yj) < C log(h -I) + log(,\) (1.23)
j=2

Equivalently,

(

S(., - I).Jj (h - ) < A-(h- I)c (1.24)
j= 2

Thus, the more general version of (1.21) is given by

CECmF,,,n(C) =

j [C ... dy2 4y, (1.25)
(h ) . .1)

C - I integral terfs

where

A. (h + 31) (1.26)

Evaluating (1.25) becomes a non-trivial exercise in bookkeeping, which we omit for the sake of brevity. As

mentioned previously, the derivations for Y = 10, I c yield results that are qualitatively representative of

those for the more general space, as long as I and h are finite - a constraint that is consistent with (2.60).
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Appendix J

Tabulated Die Casting Bounds

Section 6.4.1 derives a greatest lower bound - in on the number of die casts nA necessary for the most

Slikely face Wj,1) of an unfair die to become empirically evident with probability at least o = I - d = .95:

,nA[P(LO.i 1)),P(L4)(2)),d = .05] > 20 P(L'( 1 )" (I - P(Wi•1)) + -P(W(2) ) . (0 - P(,))
-(W ) - P((A2 ))2

* (0.1)

Recall that P(W(.i) is short-hand notation for Pj.ix(Wtj) IX). Through the Monte Carlo simulations

tabulated below, we have found that the most likely die face remains empirically evident with empirical

probability not less than .95 if ( above is reduced from the Chebyshev-imposed value of 20 to 9.

The following table compares - nA (( = 9 in (J.1) above) with empirical estimates of nA, which

we denote by iia. The empirical estimates were obtained by simulating 1,000 independent die casting

sequences, each having up to 10,000 casts, for each tabulated value of P(W 1)) and P(W( 2)). The value

of n above which W.j) became empirically evident (i.e.. above which P(W(j)) remained maximal for all

subsequent casts of the die) was recorded for each trial. The values of n for all 1,000 trials were sorted, and

h-& was taken to be the value of n at the 950th position from the bottom of the sorted list (i.e.. the 95th

percentile of the 1,000 trials),

The number of faces Cj,, on the die for each set of 1,000 trials was chosen to be the smallest number for

which the lesser ranked face probabilities did not exceed P(Wr 21):

choose Cm,,i, s.t. P(W.j1 ) < P(W( 20) Vj > 2 (J.2)

The lesser ranked probabilities P(W13 ). ... P(Wic- 1) were set to the value of P(W-)20); the remaining

probability P(OW(c)) was set to the value I - Ei_- P(Wjl)}. This choice of C and the lesser ranked

face probabilities is approximately worst-case, in that it ensures that the lesser ranked face probabilities are

391
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as large as possible. This, in turn, tends to maximize the the number of die casts necessary for the most

likely die face to become empirically evident, given a particular choice of top ranked face probabilities'

The values of h listed below are not rounded up for a posteriori class differential values greater than .2

(i.e.. for Ajv(.IX(W(,) I X) = P(W.(I I) - P(WO(2 1 ) > .2); they are rounded up to the nearest value divisible

by 5 for a posteriori class differential values greater than. I; they are rounded up to the nearest value divisible

by 10 for a posteriori class differential values not greater than. 1. The bound -, tn, is a relatively tight one

on hii, not over-estimating ii•A by more than about 100%. Likewise, -, a under-estimates 'ii only for

values of fi-a 10.

P(WO,,) P(.)(2) Ci,, Empirical Number of Casts Bound
WIiP(W(t)) ,P(WL2 ,),d = - ,%IP(WLt) ,P(Wt 2,) ,d = .051
.05]

0.1 0.02 46 140 155
0.1 0.04 24 260 321
0.1 0.06 16 640 824
0.1 0.08 13 2800 3681
0.12 0.02 45 100 113
0.12 0.04 23 170 203
0.12 0.06 16 320 405
0.12 0.08 12 730 1008
0.12 0.1 10 3190 4401
0.14 0.02 44 75 88
0.14 0.04 23 130 143
0.14 0.06 16 190 249
0.14 0.08 12 370 485
0.14 0.1 10 860 1184
0.14 0.12 9 3460 5085
0.16 0.02 43 60 71
0.16 0.04 22 90 109
0.16 0.06 15 140 172
0.16 0.08 12 230 293
0.16 0.1 10 390 562
0.16 0.12 8 990 1351
0.16 0.14 7 4050 5734
0.18 0.02 42 50 59
0.18 0.04 22 75 86
0.18 0.06 15 100 128
0.18 0.08 12 160 200

IA rgorous proof of this assertion is beyond our interest and stamina; we choose this protocol as a reasonable means of approximating 0
the number and values of the lesser-ranked face probabilities that would result in the largest number of die casts required for the most
likely face to become empirically evident, given the probabilities for the two most likely die faces.
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P(Uw-(1) P(W( 2)) Cm,,i Empirical Number of Casts Bound
P((. [p(W(l)), p(W, 2)),d = -.- iA[P(c.)(.1 )),P(U-.)(2)),d .051

.05]

0.18 0.1 I1 250 335
0.18 0.12 8 440 634

0.18 0.14 7 1050 1508

0.18 0.16 7 4420 6346
0.2 0.02 41 45 50

0.2 0.04 21 55 70
0.2 0.06 15 80 100
0.2 0.08 II 120 147

0.2 0.1 9 160 226
0.2 0.12 8 270 374

0.2 0.14 7 520 702

0.2 0.16 6 1160 1657

0.2 0.18 6 4250 6922

0.22 0.02 40 40 44
0.22 0.04 21 50 59
0.22 0.06 15 65 81

0.22 0.08 1I 90 113

0.22 0.1 9 110 164
0.22 0.12 8 180 250

0.22 0.14 7 290 411
0.22 0.16 6 530 766

0.22 0.18 6 1100 1796

0.22 0.2 5 4890 7462
0.24 0.02 39 33 38
0.24 0.04 20 45 50
0.24 0.06 14 55 67

0.24 0.08 II 70 91
0.24 0.1 9 90 - 126
0.24 0.12 8 135 181

0.24 0.14 7 180 273
0.24 0.16 6 290 446

0.24 0.18 6 570 826

0.24 0.2 5 1120 1927

0.24 0.22 5 4820 7966

0.26 0.02 38 29 34

0.26 0.04 20 34 43
0.26 0.06 14 50 56
0.26 0.08 I1 60 74

0.26 0.1 9 75 100
0.26 0.12 8 105 137

0.26 0.14 7 135 196
0.26 0.16 6 210 295
0.26 0.18 6 350 479
0.26 0.2 5 560 882

0.26 0.22 5 1290 2048

0.26 0.24 5 5540 8434

0.28 0.02 37 25 30

0
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P(W(I I) P(W)(2j) Cin Empirical Number of Casts Bound
iiA[P(W(,)1) ,P(W( 2) d = .. ,[(P( 1)),P(L4') 2 )),d .051

.05]

0.28 0.04 19 31 38
0.28 0.06 14 39 48
0.28 0.08 10 55 62
0.28 0.1 9 60 82
0.28 0.12 7 80 109
0.28 0.14 7 105 148
0.28 0.16 6 145 211
0.28 0.18 6 230 315
0.28 0.2 5 310 509
0.28 0.22 5 630 933
0.28 0.24 5 1320 2160
0.28 0.26 4 5260 8865
0.3 0.02 36 22 27
0.3 0.04 19 26 34
0.3 0.06 13 34 42
0.3 0.08 10 38 53
0.3 0.1 8 55 68
0.3 0.12 7 65 88
0.3 0.14 6 80 117
0.3 0.16 6 110 159
0.3 0.18 5 140 224
0.3 0.2 5 210 333
0.3 0.22 5 360 537
0.3 0.24 4 570 981

0.3 0.26 4 1350 2264
0.3 0.28 4 5870 9261

0.32 0.02 35 20 24
0.32 0.04 18 26 30
0.32 0.06 13 31 37
0.32 0.08 10 37 46
0.32 0.1 8 47 58
0.32 0.12 7 60 73
0.32 0.14 6 75 94
0.32 0.16 6 80 124
0.32 0.18 5 115 168
0.32 0.2 5 170 236
0.32 0.22 5 250 351
0.32 0.24 4 290 563
0.32 0.26 4 660 1025
0.32 0.28 4 1510 2358

0.32 0.3 4 5770 9621
0.34 0.02 34 19 22
0.34 0.04 18 23 27
0.34 0.06 12 30 33
0.34 0.08 10 33 40

0.34 0.1 8 38 50

0.34 0.12 7 45 62
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P(WPM)) P(W•)2 ) C,,i,, Empirical Number of Casts Bound
ii[IP(WC(LI),P(()( 2)), d = ,-nA[P(L(A 1I)),P(WV( 2)),d = .05]
.05]

0.34 0.14 6 65 78
0.34 0.16 6 75 100
0.34 0.18 5 90 131
0.34 0.2 5 115 177
0.34 0.22 5 170 248
0.34 0.24 4 240 367
0.34 0.26 4 340 587
0.34 0.28 4 680 1065
0.34 0.3 4 1600 2444
0.34 0.32 4 6360 9945
0.36 0.02 33 16 20
0.36 0.04 17 22 24
0.36 0.06 12 25 29
0.36 0.08 9 30 35
0.36 0.1 8 31 43
0.36 0.12 7 41 53
0.36 0.14 6 47 66
0.36 0.16 5 63 83
0.36 0.18 5 80 105
0.36 0.2 5 95 138
0.36 0.22 4 110 185
0.36 0.24 4 165 258
0.36 0.26 4 250 381
0.36 0.28 4 390 608
0.36 0.3 4 680 1101
0.36 0.32 3 1530 2520
0.36 0.34 3 5360 10233
0.38 0.02 32 16 - 18
0.38 0.04 17 19 22
0.38 0.06 12 24 26
0.38 0.08 9 25 31
0.38 0.1 8 29 38
0.38 0.12 7 37 46
0.38 0.14 6 42 56
0.38 0.16 5 50 69
0.38 0.18 5 62 87
0.38 0.2 5 85 110
0.38 0.22 4 105 144
0.38 0.24 4 120 192
0.38 0.26 4 175 268
0.38 0.28 4 245 394
0.38 0.3 4 390 627
0.38 0.32 3 570 1133
0.38 0.34 3 1370 2588
0.38 0.36 3 4950 10485
0.4 0.02 31 14 17
0.4 0.04 16 17 20
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P(W(.I) P(W( 2)) Gi',l Empirical Number of Casts Bound

rA[P(LOW)),P(WO( 21)),d = ,,n[P(Lt.)()), P((•(2), d .05]

.051

0.4 0.06 I1 20 24

0.4 0.08 9 23 28

0.4 0.1 7 25 33

0.4 0.12 6 33 40

0.4 0.14 6 37 48

0.4 0.16 5 46 59

0.4 0.18 5 53 73

0.4 0.2 4 71 90

0.4 0.22 4 75 115

0.4 0.24 4 95 149

0.4 0.26 4 110 199

0.4 0.zd 4 185 276

0.4 0.3 3 245 405

0.4 0.32 3 340 644

0.4 0.34 3 540 1161

0.4 0.36 3 1340 2646

0.4 0.38 3 5790 10701

0.42 0.02 30 14 15

0.42 0.04 16 15 18

0.42 0.06 II 17 21

0.42 0.08 9 21 25

0.42 0.1 7 23 30

0.42 0.12 6 28 35

0.42 0.14 6 36 42

0.42 0.16 5 36 5I

0.42 0.18 5 43 62

0.42 0.2 4 53 76

0.42 0.22 4 61 94

0.42 0.24 4 80 119

0.42 0.26 4 95 154

0.42 0.28 4 140 205

0.42 0.3 3 160 284

0.42 0.32 3 200 416

0.42 0.34 3 330 659

0.42 0.36 3 550 1185

0.42 0.38 3 1590 2696

0.42 0.4 3 5630 10881

0.44 0.02 29 12 14

0.44 0.04 15 15 17

0.44 0.06 II 17 19

0.44 0.08 8 19 23

0.44 0.1 7 20 27

0.44 0.12 6 26 31

0.44 0.14 5 29 37

0.44 0.16 5 33 44

0.44 0.18 5 44 53

0.44 0.2 4 46 64
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P(PM1)) P(W( 2)) C.,,,i,, Empirical Number of Casts Bound
i14[P(W(l)), .P(.'(2 ), d = -?IA[P(W(.I)),P(U?(2)),d .05]

.05]

0.44 0.22 4 52 78
* 0.44 0.24 4 67 97

0.44 0.26 4 85 122
0.44 0.28 3 105 158
0.44 0.3 3 125 210
0.44 0.32 3 150 290
0.44 0.34 3 230 424
0.44 0.36 3 370 671
0.44 0.38 3 650 1205

0.44 0.4 3 1600 2736
0.44 0.42 3 6030 11025

0.46 0.02 28 12 13
0.46 0.04 15 14 15
0.46 0.06 10 16 18
0.46 0.08 8 19 21
0.46 0.1 7 20 24
0.46 0.12 6 22 28
0.46 0.14 5 28 33
0.46 0.16 5 29 39
0.46 0.18 4 34 46
0.46 0.2 4 37 55
0.46 0.22 4 44 66
0.46 0.24 4 53 81
0.46 0.26 4 70 100
0.46 0.28 3 80 125
0.46 0.3 3 90 162
0.46 0.32 3 130 214

0.46 0.34 3 155 296
0.46 0.36 3 230 431
0.46 0.38 3 370 681
0.46 0.4 3 610 1221
0.46 0.42 3 1400 2768
0.46 0.44 3 5770 11133
0.48 0.02 27 II 12
0.48 0.04 14 14 14
0.48 0.06 10 15 16
0.48 0.08 8 16 19
0.48 0.1. 7 19 22
0.48 0.12 6 20 25
0.48 0.14 5 23 29
0.48 0.16 5 27 34
0.48 0.18 4 31 40
0.48 0.2 4 31 48

0.48 0.22 4 41 57
0.48 0.24 4 47 68
0.48 0.26 3 56 83
0.48 0.28 3 64 102
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P(WPIM) P(W( 2)) C,,,,, Empirical Number of Casts Bound
iI[P(WI)l1),P(W(2)),d = -nnAIP(W(1),P(W)( 2)),d = .05]
.05]

0.48 0.3 3 70 128
0.48 0.32 3 105 165
0.48 0.34 3 130 218
0.48 0.36 3 150 300
0.48 0.38 3 235 437
0.48 0.4 3 390 689
0.48 0.42 3 690 1233
0.48 0.44 3 1590 2790
0.48 0.46 3 5800 11205
0.5 0.02 26 10 II
0.5 0.04 14 12 13
0.5 0.06 10 14 15
0.5 0.08 8 15 17
0.5 0.1 6 17 20
0.5 0.12 6 20 23
0.5 0.14 5 22 26
0.5 0.16 5 22 30
0.5 0.18 4 25 35
0.5 0.2 4 27 41
0.5 0.22 4 37 49
0.5 0.24 4 45 58
0.5 0.26 3 48 70
0.5 0.28 3 48 84
0.5 0.3 3 59 104
0.5 0.32 3 70 130
0.5 0.34 3 85 167 S
0.5 0.36 3 130 221
0.5 0.38 3 165 304
0.5 0.4 3 265 441
0.5 0.42 3 380 695
0.5 0.44 3 760 1242
0.5 0.46 3 1710 2804 0
0.5 0.48 3 7180 11242
0.52 0.02 25 10 10
0.52 0.04 13 12 12
0.52 0.06 9 14 14
0.52 0.08 7 14 16
0.52 0.1 6 15 18 0
0.52 0.12 5 18 20
0.52 0.14 5 20 24
0.52 0.16 4 21 27
0.52 0.18 4 24 31
0.52 0.2 4 27 36
0.52 0.22 4 30 43 0
0.52 0.24 3 34 50
0.52 0.26 3 38 59
0.52 0.28 3 44 71



399

P(W(I)) P(WJ( 2)) Cir, Empirical Number of Casts Bound
-[p(LOJ 1)), p(U)(2)),d = d, naLjP(W(j)),P(W-( 2) ),d = .051

.05]

0.52 0.3 3 51 86
0.52 0.32 3 70 106
0.52 0.34 3 75 132
0.52 0.36 3 105 169
0.52 0.38 3 145 223
0.52 0.4 3 200 306
0.52 0.42 3 315 444
0.52 0.44 3 500 698
0.52 0.46 3 810 1245
0.54 0.02 24 9 9
0.54 0.04 13 10 II
0.54 0.06 9 11 12
0.54 0.08 7 13 14
0.54 0.1 6 15 16
0.54 0.12 5 16 19
0.54 0.14 5 18 21
0.54 0.16 4 21 24
0.54 0.18 4 21 28
0.54 0.2 4 25 32
0.54 0.22 4 25 37
0.54 0.24 3 31 44
0.54 0.26 3 29 5I
0.54 0.28 3 37 60
0.54 0.3 3 49 72
0.54 0.32 3 53 87
0.54 0.34 3 73 107
0.54 0.36 3 90 133
0.54 0.38 3 105 171
0.54 0.4 3 140 225
0.54 0.42 3 175 308
0.54 0.44 3 285 446
0.56 0.02 23 9 9
0.56 0.04 12 10 10
0.56 0.06 9 I I1I
0.56 0.08 7 II 13
0.56 0.1 6 15 15
0.56 0.12 5 15 17
0.56 0.14 5 15 19
0.56 0.16 4 17 22
0.56 0.18 4 20 25

0.56 0.2 4 21 29
0.56 0.22 3 25 33
0.56 0.24 3 26 38
0.56 0.26 3 31 44
0.56 0.28 3 30 52
0.56 0.3 3 37 61
0.56 0.32 3 47 73
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P(W)()) P(W&(2)) C ,in Empirical Number of Casts Bound
I [P(W(1 )), P(LO) 2 )),d _ ,--nA[P(L(I)),P(L)(2•),d = .05]

.05]

0.56 0.34 3 54 88
0.56 0.36 3 64 108
0.56 0.38 3 95 134
0.56 0.4 3 100 171
0.56 0.42 3 140 225
0.58 0.02 22 8 8
0.58 0.04 12 9 9
0.58 0.06 8 10 10
0.58 0.08 7 11 12
0.58 0.1 6 12 14
0.58 0.12 5 13 15
0.58 0.14 4 14 17
0.58 0.16 4 16 20
0.58 0.18 4 18 23 0
0.58 0.2 4 21 26
0.58 0.22 3 20 29
0.58 0.24 3 23 34
0.58 0.26 3 26 39
0.58 0.28 3 28 45
0.58 0.3 3 30 53 0
0.58 0.32 3 35 62
0.58 0.34 3 51 74
0.58 0.36 3 52 89
0.58 0.38 3 69 108
0.58 0.4 3 95 135
0.6 0.02 21 8 7 0
0.6 0.04 II 9 8
0.6 0.06 8 9 10
0.6 0.08 6 II !i
0.6 0.1 5 13 12
0.6 0.12 5 12 14
0.6 0.14 4 14 16 •
0.6 0.16 4 16 18
0.6 0.18 4 17 20
0.6 0.2 3 19 23
0.6 0.22 3 20 26
0.6 0.24 3 24 30
0.6 0.26 3 22 34 •
0.6 0.28 3 27 39
0.6 0.3 3 31 45
0.6 0.32 3 33 53
0.6 0.34 3 44 62
0.6 0.36 3 44 74
0.6 0.38 3 61 89
0.62 0.02 20 8 7
0.62 0.04 If 8 8
0.62 0.06 8 9 9
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P(W.)(1)) P(.)(2) ) C,,i,, Empirical Number of Casts Bound
"iA [P(wI0)),P((• 2) ),d = " 1[P(WL)(1),P()(2•),d = .05]

.05]

0.62 0.08 6 10 10
0.62 0.1 5 II 11
0.62 0.12 5 10 13
0.62 0.14 4 13 14
0.62 0.16 4 15 16
0.62 0.18 4 13 18
0.62 0.2 3 16 21
0.62 0.22 3 16 23
0.62 0.24 3 18 27
0.62 0.26 3 21 30
0.62 0.28 3 25 35
0.62 0.3 3 27 40
0.62 0.32 3 33 46
0.62 0.34 3 36 53
0.62 0.36 3 44 63
0.64 0.02 19 7 6
0.64 0.04 10 8 7
0.64 0.06 7 9 8
0.64 0.08 6 8 9
0.64 0.1 5 10 10
0.64 0.12 4 12 12
0.64 0.14 4 11 13
0.64 0.16 4 14 15
0.64 0.18 3 13 17
0.64 0.2 3 13 19
0.64 0.22 3 15 21
0.64 0.24 3 16 24
0.64 0.26 3 19 27
0.64 0.28 3 19 30
0.64 0.3 3 27 35
0.64 0.32 3 31 40
0.64 0.34 3 35 46
0.66 0.02 18 6 6
0.66 0.04 10 8 7
0.66 0.06 7 8 8
0.66 0.08 6 8 8
0.66 0.1 5 9 10
0.66 0.12 4 10 II
0.66 0.14 4 10 12
0.66 0.16 4 Ii 13
0.66 0.18 3 13 15
0.66 0.2 3 14 17
0.66 0.22 3 14 19
0.66 0.24 3 17 21
0.66 0.26 3 16 24
0.66 0.28 3 18 27
0.66 0.3 3 22 31
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P(W.)(1)) P(W)(2)) Gin Empirical Number of Casts Bound
,IA[P(W(I)), P(U( 2•)),d = IA ,[P(WwLO)), P(L.' 2)),d = .051

.051

0.66 0.32 3 25 35
0.68 0.02 17 6 5 0
0.68 0.04 9 7 6
0.68 0.06 7 7 7
0.68 0.08 5 8 8
0.68 0.1 5 9 9
0.68 0.12 4 8 10
0.68 0.14 4 10 11
0.68 0.16 3 12 12
0.68 0.18 3 II 14
0.68 0.2 3 12 15
0.68 0.22 3 12 17
0.68 0.24 3 13 19
0.68 0.26 3 15 21 0
0.68 0.28 3 18 24
0.68 0.3 3 17 27
0.7 0.02 16 6 5
0.7 0.04 9 6 6
0.7 0.06 6 7 6
0.7 0.08 5 7 7 S
0.7 0.1 4 8 8
0.7 0.12 4 9 9
0.7 0.14 4 9 10
0.7 0.16 3 9 1 t
0.7 0.18 3 10 12
0.7 0.2 3 12 14 5
0.7 0.22 3 II 15
0.7 0.24 3 13 17
0.7 0.26 3 15 19
0.7 0.28 3 15 21
0.72 0.02 15 6 5
0.72 0.04 8 6 5 0
0.72 0.06 6 7 6
0.72 0.08 5 7 7
0.72 0.1 4 7 7
0.72 0.12 4 8 8
0.72 0.14 3 9 9
0.72 0.16 3 10 10 •

0.72 0.18 3 10 1I
0.72 0.2 3 9 13
0.72 0.22 3 10 14
0.72 0.24 3 12 15
0.72 0.26 3 15 17
0.74 0.02 14 5 4 0
0.74 0.04 8 5 5
0.74 0.06 6 6 5
0.74 0.08 5 7 6
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P(W-(1)) P(W)(2)) Cl,,,, Empirical Number of Casts Bound
iA[(P(W.z)),a (U) 2 ),d = -•, AP(U()),P(LV)(2)),d = .051
.05]

0.74 1.1 4 7 7
0.74 0.12 4 7 7
0.74 0.14 3 8 8
0.74 0.16 3 9 9
0.74 0.18 3 9 10
0.74 0.2 3 9 II
0.74 0.22 3 1I 13
0.74 0.24 3 II 14
0.76 0.02 13 5 4
0.76 0.04 7 5 4
0.76 0.06 5 6 5
0.76 0.08 4 7 5
0.76 0.1 4 6 6
0.76 0.12 3 7 7
0.76 0.14 3 8 8
0.76 0.16 3 8 8
0.76 0.18 3 8 9
0.76 0.2 3 7 10
0.76 0.22 3 iI I1
0.78 0.02 12 4 3
0.78 0.04 7 5 4
0.78 0.06 5 6 4
0.78 0.08 4 6 5
0.78 0.1 4 6 6
0.78 0.12 3 7 6
0.78 0.14 3 6 7
0.78 0.16 3 7 8
0.78 0.18 3 7 8
0.78 0.2 3 9 9
0.8 0.02 II 5 3
0.8 0.04 6 5 4
0.8 0.06 5 5 4
0.8 0.08 4 6 5
0.8 0.1 3 6 5
0.8 0.12 3 6 6

0.8 0.14 3 7 6
0.8 0.16 3 7 7
0.8 0.18 3 7 8
0.82 0.02 10 4 3
0.82 0.04 6 4 3
0.82 0.06 4 5 4
0.82 0.08 4 5 4
0.82 0.1 3 5 5

0.82 0.12 3 5 5
0.82 0.14 3 5 6
0.82 0.16 3 5 6
0.84 0.02 9 4 3
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P(WLI()) P(W(2)) C-,i,, Empirical Number of Casts Bound
,•A[p(W311), p(W(2)), d = ,-1,,[P(•LL) ),P(((2)),d = .051

.051

0.84 0.04 5 4 3
0.84 0.06 4 5 3

0.84 0.08 3 5 4

0.84 0.1 3 5 4

0.84 0.12 3 5 5

0.84 0.14 3 5 5

0.86 0.02 8 3 2

0.86 0.04 5 3 3

0.86 0.06 4 3 3

0.86 0.08 3 5 3

0.86 0. 1 3 5 4

0.86 0.12 3 5 4

0.88 0.02 7 3 2

0.88 0.04 4 3 2

0.88 0.06 3 3 3
0.88 0.08 3 3 3

0.88 0.1 3 3 3

0.9 0.02 6 3 2

0.9 0.04 4 3 2

0.9 0.06 3 3 2

0.9 0.08 3 3 3

0.92 0.02 5 3 2

0.92 0.04 3 3 2

0.92 0.06 3 3 2

0.94 0.02 4 3 I

0.94 0.04 3 3 2

0.96 0.02 3 3 1



* Appendix K

A Modified Radial Basis Function
0 Classifier

The Gaussian Radial Basis Function (RBF) neural network architecture (e.g., [18, 95, 104, 92]) employs the

following non-linear input-to-output mapping, where x denotes the input to the RBF unit (or node), and

f(x) denotes the node's output:

AX) = 2)jI~ .exp[ (X~ - jl1 )E1 (X' - 1 (.)]• f~) = 27r)f t1-2

The notation zT denotes the transpose of vector z, and ni denotes the dimensionality of the input vector X.

The modified radial basis function node is identical to the standard RBF node with two exceptions.

9 The covariance matrix E associated with each RBF node is diagonal, and all of its diagonal elements

have the same value (i.e., the covariance matrix has orthonormal eigenvectors and all of its eigenvalues

are identical). The matrix is described by the equation

= oI, (K.2)

where I denntes the identity matrix and a denotes the node's single variance parameter. For this

reason, the modified RBF node has m2 
- I fewer parameters than its standard counterpart. In the

case of an 1 1-element input vector, the modified RBF node has 12 parameters compared to the

standard RBF node's 132. Equation (K.2) constrains the RBF node to have hyperspherical (rather than

hyperellipsoidal) contours of constant value on the domain of z

e The standard RBF's ( term in (K.2) is eliminated. This has the effect of bounding the modified RBF's

output f(z) on the interval [0, 1 -much like the logistic non-linearity. The standard RBF node's
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output, by contrast, is botnded on 10,x] and has unit area over (he domain of x.

Thus, the non-linear input.-to-output mapping for the modified -BF unit is given by

f(x) = exp[-•--i(a - 1)Tl(X - 11)] (K.3)

where I denotes the identity matrix and o,2 denotes the node's single variance parameter. By having n12 - I

fewer parameters than its standard counterpart, the modified RBF node has significantly lower functional

complexity. Despite their reduced complexity, networks of modified RBF nodes are still capable of forming

a classifier with complex non-linear deciion boundaries. As a result, such networks are well suited for

differential learning (e.g., see chapter 10). We refer to the differentially-generated variants as Differential

Radial Basis Function (DRBF) classifiers.



Appendix L

Anderson & Fisher's Iris Data

L.A Original Iris Data'

The following data describing three varieties of Iris (Iris virginica, Iris versicolor, and Iris setosa) was

originally collected by E. Anderson[3], and subsequently used by R. A. Fisher in his seminal paper on linear

discriminants 1341. The feature vector X has four elements: x, denotes sepal length, x2 denotes sepal

width, xri denotes petal length, and x4 denotes petal width. There are three classes: WU denotes Iris setosa,

W 2 denotes Iris 'ersicolor, and W. denotes Iris virginica. The examples are listed below:

Example Class xl x2 x3 x4

7 1 5.1 3.5 1.4 0.2
1 1 4.9 3.0 1.4 0.2
2 1 4.7 3.2 1.3 0.2
3 1 4.6 3.1 1.5 0.2
4 1 5.0 3.6 1.4 0.2
5 1 5.4 3.9 1.7 0.4
6 1 4.6 3.4 1.4 0.3
7 1 5.0 3.4 1.5 0.2
8 1 4.4 2.9 1.4 0.2
9 1 4.9 3.1 1.5 0.1
10 1 5.4 3.7 1.5 0.2
11 1 4.8 3.4 1.6 0.2
12 1 4.8 3.0 1.4 0.1
13 1 4.3 3.0 1.1 0.1
14 1 5.8 4.0 1.2 0.2
15 1 5.7 4.4 1.5 0.4
16 1 5.4 3.9 1.3 0.4
17 1 5.1 3.5 1.4 0.3
18 1 5.7 3.8 1.7 0.3
19 1 5.1 3.8 1.5 0.3
20 1 5.4 3.4 1.7 0.2
21 1 5.1 3.7 1.5 0.4
22 1 4.6 3.6 1.0 0.2
23 1 5.1 3.3 1.7 0.5
24 1 4.8 3.4 1.9 0.2
25 1 5.0 3.0 1.6 0.2
26 1 5.0 3.4 1.6 0.4
27 1 5.2 3.5 1.5 0.2
28 1 5.2 3.4 1.4 0.2

1 We thank Professor Casimir Kulikowski of Rutgers University (or providing us with an electrotic version of Anderon/Fisher's
original data.
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29 1 4.7 3.2 1.6 0.2

30 1 4.8 3.1 1.6 0.2

31 1 5.4 3.4 1.5 0.4

32 1 5.2 4.1 1.5 0.1

33 1 5.5 4.2 1.4 0.2

34 1 4.9 3.1 1.5 0.2

35 1 5.0 3.2 1.2 0.2

36 1 5.5 3.5 1.3 0.2

37 1 4.9 3.6 1.4 0.1

38 1 4.4 3.0 1.3 0.2

39 1 5.1 3.4 1.5 0.2

40 1 5.0 3.5 1.3 0.3

41 1 4.5 2.3 1.3 0.3

42 1 4.4 3.2 1.3 0.2

43 1 5.0 3.5 1.6 0.6

44 1 5.1 3.8 1.9 0.4

45 1 4.8 3.0 1.4 0.3

46 1 5.1 3.8 1.6 0.2

47 1 4.6 3.2 1.4 0.2

48 1 5.3 3.7 1.5 0.2

49 1 5.0 3.3 1.4 0.2

50 2 7.0 3.2 4.7 1.4

51 2 6.4 3.2 4.5 1.5

52 2 6.9 3.1 4.9 1.5

53 2 5.5 2.3 4.0 1.3

54 2 6.5 2.8 4.6 1.5

55 2 5.7 2.8 4.5 1.3

56 2 6.3 3.3 4.7 1.6
57 2 4.9 2.4 3.3 1.0

58 2 6.6 2.9 4.6 1.3

59 2 5.2 2.7 3.9 1.4

60 2 5.0 2.0 3.5 1.0

61 2 5.9 3.0 4.2 1.5
62 2 6.0 2.2 4.0 1.0 0
63 2 6.1 2.9 4.7 1.4

64 2 5.6 2.9 3.6 1.3

65 2 6.7 3.1 4.4 1.4

66 2 5.6 3.0 4.5 1.5
67 2 5.8 2.7 4.1 1.0

6 2 6.2 2.2 4.5 1.5

69 2 5.6 2.5 3.9 1.1

70 2 5.9 3.2 4.8 1.8

71 2 6.1 2.8 4.0 1.3

72 2 6.3 2.5 4.9 1.5

73 2 6.1 2.8 4.7 1.2

74 2 6.4 2.9 4.3 1.3

75 2 6.6 3.0 4.4 1.4

76 2 6.8 2.8 4.8 1.4

77 2 6.7 3.0 5.0 1.7

78 2 6.0 2.9 4.5 1.5

79 2 5.7 2.6 3.5 1.0

80 2 5.5 2.4 3.8 1.1

81 2 5.5 2.4 3.7 .1.0

82 2 5.8 2.7 3.9 1.2

83 2 6.0 2.7 5.1 1.6

84 2 5.4 3.0 4.5 1.5

85 2 6.0 3.4 4.5 1.6

86 2 6.7 3.1 4.7 1.5

87 2 6.3 2.3 4.4 1.3

88 2 5.6 3.0 4.1 1.3

89 2 5.5 2.5 4.0 1.3

90 2 5.5 2.6 4.4 1.2

91 2 6.1 3.0 4.6 1.4

92 2 5.8 2.6" 4.0 1.2

93 2 5.0 2.3 3.3 1.0

94 2 5.6 2.7 4.2 1.3

95 2 5.7 3.0 4.2 1.2

96 2 5.7 2.9 4.2 1.3

97 2 6.2 2.9 4.3 1.3

98 2 5.1 2.5 3.0 1.1
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99 2 5.7 2.8 4.1 1.3

100 3 6.3 3.3 6.0 2.5
101 3 5.8 2.7 5.1 1.9
102 3 7.1 3.0 5.9 2.1
103 3 6.3 2.9 5.6 1.8
104 3 6.5 3.0 5.8 2.2
105 3 7.6 3.0 6.6 2.1
106 3 4.9 2.5 4.5 1.7
107 3 7.3 2.9 6.3 1.8
108 3 6.7 2.5 5.8 1.8
109 3 7.2 3.6 6.1 2.5
110 3 6.5 3.2 5.1 2.0
111 3 6.4 2.7 5.3 1.9
112 3 6.8 3.0 5.5 2.1
113 3 5.7 2.5 5.0 2.00114 3 5.8 2.8 5.1 2.4
115 3 6.4 3.2 5.3 2.3
116 3 6.5 3.0 5.5 1.8
117 3 7.7 3.8 6.7 2.2
118 3 7.7 2.6 6.9 2.3
119 3 6.0 2.2 5.0 1.5
120 3 6.9 3.2 5.7 2.3
121. 3 5.6 2.8 4.9 2.0
122 3 7.7 2.8 6.7 2.0
123 3 6.3 2.7 4.9 1.8
124 3 6.7 3.3 5.7 2.1
125 3 7.2 3.2 6.0 1.8
126 3 6.2 2.8 4.8 1.8
127 3 6.1 3.0 4.9 1.8
128 3 6.4 2.8 5.6 2.1
129 3 7.2 3.0 5.8 1.6
.30 3 7.4 2.8 6.1 1.9

131 3 7.9 3.8 6.4 2.0
132 3 6.4 2.8 5.6 2.2
133 3 6.3 2.8 5.1 1.5
134 3 6.1 2.6 5.6 1.4
135 3 7.7 3.0 6.1 2.3
136 3 6.3 3.4 5.6 2.4
137 3 6.4 3.1 5.5 1.8
138 3 6.0 3.0 4.8 1.8
139 3 6.9 3.1 5.4 2.1
140 3 6.7 3.1 5.6 2.4
141 3 6.9 3.1 5.1 2.3
142 3 5.8 2.7 5.1 1.9
143 3 6.8 3.2 5.9 2.3
144 3 6.7 3.3 5.7 2.5
145 3 6.7 3.0 5.2 2.3
146 3 6.3 2.5 5.0 1.9
147 3 6.5 3.0 5.2 2.0
148 3 6.2 3.4 5.4 2.3
149 3 5.9 3.0 5.1 1.8

L.2 Normalized Iris Data

The following data was computed via an affine transformation of the original data. We determined the lower

and upper bound on each of the four feature vector elements { (11,u.) ..... (14,14) }, we then transformed

each element of the 150 vectors as follows

1 ,)=2 I! (L.1)

where xi denotes the ith element of example XJ and x' denotes the post-transformation value of x4. This
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affine transformation normalizes each element of the N = 4-dimensional feature vector X to the closed

interval [-1,11. That is. the affine transformation projects the original feature vector X E onto the

normalized vector X' E [- I, 114. The normalized data are given below:

Example Class xl x2 x3 x4

0 1 -0.555556 0.250000 -0.864407 -0.916667
1 1 -0.666667 -0.166667 -0.864407 -0.916667
2 1 -0.77777P 0.000000 -0.898305 -0.916667
3 1 -0.833333 -0.083333 -0.830508 -0.916667
4 1 -0.611111 0.333333 -0.864407 -0.916667
5 1 -0.388889 0.583333 -0.762712 -0.750000
6 1 -0.833333 0.166667 -0.864407 -0.833333
7 1 -0.611111 0.166667 -0.830508 -0.916667
A 1 -0.944444 -0.250000 -0.864407 -0.916667
9 1 -0.666667 -0.083333 -0.830508 -1.000000
10 1 -0.389889 0.416667 -0,830508 -0.916667
11 1 -0.722222 0.166667 -0.796610 -0.916667
12 1 -0.722222 -0.166667 -0.864407 -1.000000
13 1 -1.000000 -0.166667 -0.966102 -1.000000
14 1 -0.166667 0.666667 -0.932203 -0.916667
15 1 -0.222222 1.000000 -0.830508 -0.750000
16 1 -0.388889 0.583333 -0.898305 -0.750000
17 1 -0.555556 0.250000 -0.864407 -0.833333
18 1 -0.222222 0.500000 -0.762712 -0.833333
19 1 -0.555556 0.500000 -0.830508 -0.833333
20 1 -0.388889 0.166667 -0.762712 -0.916667
21 1 -0.555556 0.416667 -0.830508 -0.750000
22 1 -0.833333 0.333333 -1.000000 -0.916667
23 1 -0.555556 0.083333 -0.762712 -0.666667
24 1 -0.722222 0.166667 -0.694915 -0.916667
25 1 -0.611111 -0.166667 -0.796610 -0.916667
26 1 -0.611111 0.166667 -0.796610 -0.750000
27 1 -0.500000 0.250000 -0.830508 -0.916667
28 1 -0.500000 0.166667 -0.864407 -0.916667
29 1 -0.777778 0.000000 -0.796610 -0.916667
30 1 -0.722222 -0.083333 -0.796610 -0.916667
31 1 -0.388889 0.166667 -0.830508 -0.750000
32 1 -0.500000 0.750000 -0.830508 -1.000000
33 1 -0.333333 0.833333 -0.864407 -0.916667
34 1 -0.666667 -0.083333 -0.830508 -0.916667
35 1 -0.611111 0.000000 -0.932203 -0.916667
36 1 -0.333333 0.250000 -0.898305 -0.916667
37 1 -0.666667 0.333333 -0.864407 -1.000000
38 1 -0.944444 -0.166667 -0.898305 -0.916667
39 1 -0.555556 0.166667 -0.830508 -0.916667
40 1 -0.611111 0.250000 -0.898305 -0.833333
41 1 -0.888889 -0.750000 -0.898305 -0.833333 0
42 1 -0.944444 0.000000 -0.898305 -0.916667
43 1 -0.611111 0.250000 -0.796610 -0.583333
44 1 -0.555556 0.500000 -0.694915 -0.750000
45 1 -0.722222 -0.166667 -0.864407 -0.833333
46 1 -0.555556 0.500000 -0.796610 -0.916667
47 1 -0.833333 0.000000 -0.864407 -0.916667
48 1 -0.444444 0.416667 -0.830508 -0.916667
49 1 -0.611111 0.083333 -0.864407 -0.916667
50 2 0.500000 0.000000 0.254237 0.083333
51 2 0.166667 0.000000 0.186441 0.166667
52 2 0.444444 -0.083333 0.322034 0.166667
53 2 -0.333333 -0.750000 0.016949 0.000000
54 2 0.222222 -0.333333 0.220339 0.166667
55 2 -0.222222 -0.333333 0.186441 0.000000
56 2 0.111111 0.083333 0.254237 0.250000
57 2 -0.666667 -0.666667 -0.220339 -0.250000
58 2 0.277778 -0.250000 0.220339 0.000000
59 2 -0.500000 -0.416667 -0.016949 0.083333
60 2 -0.611111 -1.000000 -0.152542 -0.250000
61 2 -0.111111 -0.166667 0.084746 0.166667
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62 2 -0.055556 -0.833333 0.016949 -0.250000
63 2 0.000000 -0.250000 0.254237 0.083333
64 2 -0.277778 -0.250000 -0.118644 0.000000
Qj 2 0.33333. -0.083333 0.152542 0.083333
66 2 -0.277778 -0.166667 0.186441 0.166667
67 2 -0.166667 -0.416667 0.050847 -0.250000
6A 2 0.055556 -0.833333 0.186441 0.166667
69 2 -0.27777A -0.583333 -0.016949 -0.166667
70 2 -0.111111 0.000000 0.288136 0.416667
71 2 0.000000 -0.333333 0.016949 0.000000
72 2 0.111111 -0.583333 0.322034 0.166667
73 2 0.000000 -0.333333 0.254237 -0.083333
74 2 0.166667 -0.250000 0.118644 0.000000
75 2 0.277778 -0.166667 0.152542 0.083333
76 2 0.388889 -0.333333 0.288136 0.083333
77 2 0.333333 -0.166667 0.355932 0.333333
78 2 -0.055556 -0.250000 0.186441 0.166667
79 2 -0.222222 -0.500000 -0.152542 -0.250000
80 2 -0.333333 -0.666667 -0.050847 -0.166667
81 2 -0.333333 -0.666667 -0.084746 -0.250000
82 2 -0.166667 -0.416667 -0.016949 -0.083333
83 2 -0.055556 -0.416667 0.389A31 0.250000
84 2 -0.388889 -0.166667 0.186441 0.166667
85 2 -0.055556 0.166667 0.186441 0.250000
86 2 0.333333 -0.083333 0.254237 0.166667
87 2 0.111111 -0.750000 0.152542 0.000000
88 2 -0.277778 -0.166667 0.050847 0.000000
89 2 -0.333333 -0.583333 0.016949 0.000000
90 2 -0.333333 -0.500000 0.152542 -0.083333
91 2 0.000000 -0.166667 0.220339 0.083333
92 2 -0.166667 -0.500000 0.016949 -0.083333
93 2 -0.611111 -0.750000 -0.220339 -0.250000
94 2 -0.277778 -0.416667 0.084746 0.000000
95 2 -0.222222 -0.166667 0.084746 -0.083333

96 2 -0.222222 -0.250000 0.084746 0.000000

97 2 0.055556 -0.250000 0.118644 0.000000
98 2 -0.555556 -0.583333 -0.322034 -0.166667
99 2 -0.222222 -0.333333 0.050W47 0.000000
100 3 0.111111 0.083333 0.694915 1.000000
101 3 -0.166667 -0.416667 0.389A31 0.500000
102 3 0.555556 -0.166667 0.661017 0.666667
103 3 0.111111 -0.250000 0.559322 0.416667
104 3 0.222222 -0.166667 0.627119 0.750000
105 3 0.833333 -0.166667 0.898305 0.666667
106 3 -0.666667 -0.583333 0.186441 0.333333
107 3 0.666667 -0.250000 0.796610 0.416667
108 3 0.333333 -0.583333 0.627119 0.416667
109 3 0.611111 0.333333 0.728814 1.000000
110 3 0.222222 0.000000 0.389831 0.583333
111 3 0.166667 -0.416667 0.457627 0.500000
112 3 0.388889 -0.166667 0.525424 0.666667
113 3 -0.222222 -0.583333 0.355932 0.583333
114 3 -0.166667 -0.333333 0.389831 0.916667
115 3 0.166667 0.000000 0.457627 0.833333
116 3 0.222222 -0.166667 0.525424 0.416667
117 3 0.888889 0.500000 0.932203 0.750000
118 3 0.888889 -0.500000 1.000000 0.833333
119 3 -0.055556 -0.833333 0.355932 0.166667
120 3 0.444444 0.000000 0.593220 0.833333
121 3 -0.277778 -0.333333 0.322034 0.583333
122 3 0.888889 -0.333333 0.932203 0.583333
123 3 0.111111 -0.416667 0.322034 0.416667
124 3 0.333333 0.083333 0.593220 0.666667
125 3 0.611111 0.000000 0.694915 0.416667
126 3 0.055556 -0.333333 0.28R136 0.416667
127 3 0.000000 -0.166667 0.322034 0.416667
128 3 0.166667 -0.333333 0.559322 0.666667
129 3 0.611111 -0.166667 0.627119 0.250000
130 3 0.722222 -0.333333 0.728814 0.500000
131 3 1.000000 0.500000 0.830508 0.583333
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132 3 0.166667 -0.333333 0.559322 0.750000

133 3 0.111111 -0.333333 0.389831 0.166667

134 3 C.0CO -0.5cO000 0.559322 0.C33333

135 3 0.888889 -0.166667 0.728814 0.833333

136 3 0.111111 0.166667 0.559322 0.916667

137 3 0.166667 -0.083333 0.525424 0.416667

139 3 -0.055556 -0.166667 0.288136 0.416667

139 3 0.444444 -0.083333 0.491525 0.666667 0
140 3 0.333333 -0.083333 0.559322 0.916667

141 3 0.444444 -0.023333 0.389831 0.833333

142 3 -0.166667 -0.416667 0.389831 0.500000

143 3 0.388889 0.000000 0.661017 0.833333

144 3 0.333333 0.083333 0.593220 1.000000

145 3 0.333333 -0.166667 0.423729 0.833333

146 3 0.111111 -0.583333 0.355932 0.500000

147 3 0.222222 -0.166667 0.423729 0.583333

148 3 0.055556 0.166667 0.491525 0.833333

149 3 -0.111111 -0.166667 0.389831 0.416667



Appendix M

Complexity Reduction Techniques

We describe our implementation of three techniques for reducing the classifier's complexity:

* * Weight decay.

"* Weight smoothing.

"* Linear non-invertible feature vector compression

The number of parameters is the implicit measure of discriminator complexity in all three techniques. The

first two techniques work by reducing what Moody calls the effective number of parameters 1971 in the

discriminator; the third technique reduces the actual number of parameters. By reducing the number of

parameters (both actual and effective), we reduce the classifier's discriminant variance.

Although these techniques are the only ones we use in the experiments of part I1, many other useful ones

exist.

M.1 Weight Decay

We employ the weight-decay formalism described by Hanson and Pratt 1571, in which parameters (i.e.,

weights) decay to a value of zero in the absence of learning influences. This form of complexity reduction

can be used with any type of parameter vector for which setting an element to zero is equivalent to removing

* the element from the vector.' Assuming a learning procedure that updates each parameter 0 iteratively, the

notation O[vl] denotes the parameter value at the tth update. By this notation, the value of the parameter at

the beginning of learning is 6[0o. At the ,1th update, O[ilJ is equal to a fraction of its value after the previous

update plus the parameter change AO[q] provided by the iterative learning procedure:

* 1Hanson and Pratt's formalism can be generalized to one in which the parameters decay to a potentially non-zero null value in the
absence of learning influences. Such a generalization would make the technique applicable to radial basis function (RBF) classifiers, as
an example, for which zero-valued parameters are generally not null. but have an effect on the discriminator's mappings.

413
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0,228 Eat = 2.R447

0.114.

0.000

-I ~01.. ......... ....... ....

Figure M. I: Left. The parameters of a 1024-pixel differentially-generated logistic linear classifier described
in chapter 9. generated by differential learning _ ::hout weight smoothing or weight decay. Light parameters,
or weights are positive; dark weights are negative; the gray tone in (all but the vertically centered pixel of)
the display's left edge represents the value zero. Right: A histogram of the weights in the left figure. Note
the entropy of the weights is 2.8.

0[111= (I - ),- I] + A0[,1] (M.I)

The decay rate ( E [0,1 ) determines how fast the parameter decays to zero. Equation (M. I ) is a first-order

difference equation with the forcing function AO[•i]. If we set the initial condition 0[-Il = 0, then

0[0] = AO[0], and the solution to the difference equation is given by

= (I - ()"0[01 + J(l - ()"?-'A0[kJ V, > 0 (M.2)
k=l

Thus, the parameter's dependence on its initial value decreases exponentially as learning progresses (i.e.,

as Y, increases). Likewise, the parameter's dependence on prior updates decreases exponentially. As

( -. I, decay is very rapid; as < -4 0, decay is very slow. After a large number of iterations

(i.e., q 3s- 1 ) the parameter's value effectively depends solely on the sequence of past learning updates

(A0[,/], A[,i - I], ... ). Specifically, •

o[,1] A E(I - 4)-'A•oikj; >i> 0, ( > 0, (M.3)

which means that the parameter value can be viewed as the output of a first-order auto-regressive (AR) filter S

operating on the learning procedure's parameter update sequence.
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0.449 Entropy = 1.62.6

* 0.224

0.000

-1 ~01

Figure M.2: Left: The parameters of the logistic linear classifier shown in figure M.I, generated by
differential learning with weight decay. Right: A histogram of the weights in the left figure. Note the entropy
of the weights is now 1.6, reflecting the lower variance in their distribution engendered by weight decay. This

0 lower variance/entropy accounts for the low-contrast in the weight display on the left: many of the weights
have decayed to zero.

M.1.1 Parametric Entropy

* Figure M. I (left) illustrates the weights of a linear classifier with a single output unit, descr,, Ad in chapter 9.

The classifier is used to diagnose a joint disorder in magnetic resonance images, so its input is retinotopic

(i.e., image-like) and its weights can themselves be displayed as an image. The weights are generated by

differential learning without weight decay or weight smoothing. The lighter weights have positive values; the

0 darker weights have negative values; the gray tone in (all but the vertically centered pixel of) the display's

left edge represents the value zero. Figure M. I (right) shows a histogram of the weight values.

If we view all the parameters as realizations of a single random variable (rv), their histogram can be

loosely interpreted as an indicator of the rv's information content - if all the parameters have the same

value, they don't contain any information about the patterns that the discriminator classifies; if they have

widely varying (e.g., uniformly-distributed) values, they probably do contain information.

Definition M.A Parametric Entropy: The entropy of a parameter vector 9 is based on a 50-bin

histogram of its values, and is simply

0 30

- Z Pi log2(Pi), (M4)
i=1I

wshere pi denotes the fraction of parameter vector elements with values that fall within the ith histogram

* bin. The histogram spans the range of the largest integer not greater than the most negative parameter to the

smallest integer not less than the mostpositive parameter: [bin[lJJ = [min O8kJ & rbin[50J1 = rmaxk Okl.
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Remark: We stress that this definition is an intuitive and rather arbitrary one, neither rigorously
substantiated nor generally applicable. It is restricted to parameter vectors associated with retinotopic

feature vectors (e.g., images, speech spectrograms, etc.) because it assumes all parameters are realizations

of the same single random parameter variable. This assumption is plausible for image-like feature vectors
because they tend to have a large number of spatially correlated elements. As a result, discriminator
parameter vectors associated with the feature vector tend to have an equally large number of spatially

correlated elements. Where the correlation is low between parameters, there tend to be details in the feature
vector that are critical to the classification process. Of course, uncorrelated parameters tend to have higher
variance, so their associated parametric entropy is higher. Thus, parametric entropy is a convenient albeit

ad-hoc measure of the parameter vector's information content.

The parametric entropy of the weight vector in figure M. I, generated without weight decay or weight
smoothing, is 2.8. The parametric entropy of the weight vector in figure M. I, generated with a weight decay
rate of ( = .005, is 1.6. The lower parametric entropy is evident when one compares the two weight
displays and their associated histograms: the decayed weight distribution has less variance and more kurtosis
(i.e., the histogram peaks more sharply about zero) - both related to lower parametric entropy. There is

visibly less structure in the decayed weights.

M.2 Weight Smoothing

We employ a simple form of weight smoothing developed by Pomerleau 2 in which the parameter vector

is filtered after each update. This form of complexity reduction is restricted to weight vectors associated
with retinotopic feature vectors because it relies on the assumption that "neighboring" parameters (i.e.,

those corresponding to neighboring pixels in the feature'vector) can be highly correlated without increasing

discriminant error.
We arrange the parameter vector in a manner that reflects the feature vector pixel map with which it

is associated (the weight displays of figures M.1 and M.2 exemplify such an arrangement). We convolve
a simple moving average (MA) filter with this parameter map. The filter perturbs each parameter towards

the average value of it and its eight neighboring parameters in the map. Figure M.3 illustrates the filter's
kernel function. The gray box at the center represents 0o, the parameter being processed at a given point in

the filtering convolution; the surrounding boxes represent this parameter's neighbors {(1, .... ,O } in the

parameter map. The kernel omits the appropriate parameters (with a commensurate modification to (M.5)
below) when they do not exist (e.g., for 0 0 parameters on the edge of the map). We denote the output of the

filter by 00 when the kernel is centered on 0o:

2 Personal communication.

I I II a0
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LE1IIflO4Th
Figure M.3: The moving average filter kernel used for weight smoothing. The gray parameter 00 is the
principal input to the filter; its neighboring parameters comprise the other terms in the moving average of
(M.5).

o0' = 0 o , 0 - oj
9=0 =0 0)(M .5)

j=I

The parameter K E [0,l ) adjusts the level of smoothing. The filter is convolved with the parameter map

after each update of the parameter vector.

Figure M.4 (left) illustrates weights generated by differential learning with weight smoothing (K, = 0.05).

The parametric entropy of the weight vector in figure M. 1, generated without weight decay or weight

smoothing, is 2.8. The parametric entropy of the weight vector in figure M.4 is 2.2. The lower parametric

entropy is evident when one compares the two weight displays and their associated histograms: the smoothed

weight distribution has less variance and more kurtosis. There is visibly less structure in the smoothed

weights, and they appear blurred as a result of the iterative filtering operation.

M.3 Linear Non-Invertible Feature Vector Compression

We employ a simple form of lossy (i.e., non-invertible) data compression as a third approach to complexity

reduction. Like weight smoothing, it is restricted to weight vectors associated with retinotopic feature vectors

because it relies on the assumption that "neighboring" elem sits (i.e., those corresponding to neighboring

pixels in the feature vector map) are highly correlated and, as a result, redundant.

The compression ratio (CR) is the ratio of the number of elements in the original feature vector to the

number of elements in the compressed feature vector. Figure M.5 illustrates compression when the ratio CR
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Figure M.4: Left: The parameters of the logistic linear classifier shown in figure M. I, generated by differential
learning with weight smoothing. Right: A histogram of the weights in the left figure. Note the entropy of the
weights is 2.2, compared with 2.8 for the weights generated without smoothing. The lower entropy reflects
the lower variance in the distribution of weights caused by weight smoothing, which accounts for the lower
contrast in this weight display compared to the one in figure M.2. Note the blurred appearance of the weights
due to the filtering effect of weight smoothing.

is an integer (top), and when the it is not an integer (bottom). For the case in which the compression ratio 0
is an integer, the compressed element of X, which we denote by x', is equal to the average value of the

elements in X from which it is formed; we denote these elements by {x . . XCR

CR
X= - xi (M.6)

i= I

In figure M.5 (top) CR = 4, and each x' in the compressed image is the average of four pixels in the

original image (i.e., the average of four elements in the original feature vector).

For the case in which the compression ratio is not an integer, x' is proportional to the value of the

elements in X from which it is formed. Figure M.5 (bottom) illustrates compression when CR = 2.25. In

this case, every element of the compressed feature vector is formed from four elements in the original vector.

As an example, the lower right element of the compressed vector, which we will denote by x', is given by

- CR 2.25 1xl + ýX2 + X.1 + X4 (M.7)

The subscripts of {x. x4 1 in (M.7) are shown in the lef. side of tP-_ 'Iure, which depicts the original

feature vector elements.
Figures 8.1 and 8.5 in chapter 8 and figures 9.1 and 9.3 in chapter 9 illustrate the effects of linear S

non-invertible compression for two different retinotopic feature vectors. The compression ratio in both tasks
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OEME

Figure M.5: Top: Linear non-invertible compression with a compression ratio of 4, 1. The value of each pixel
in the compressed image is equal to the average value of the four constituent pixels in the original image.
Bottom: Linear non-invertible compression with a compression ratio of 2.25:1. The constituent pixels in the
original image contribute to the compressed image in proportion to the fraction of their area that falls within
the bounds of the compressed pixel (see equation (M.7)).

is 4:1. We characterize the compression as non-invertible because the original feature vector cannot be

* derived from the compressed vector.

M.3.1 A Brief Argument Against Principal Components Analysis

* Readers familiar with the method of principal components analysis (PCA) might wonder why we do not

employ this technique. In its details the reason is rather long-winded, so we give only a brief explanation.

Principal components analysis relies on the following assumptions:

* e A feature vector X's first and second montents are assumed to be sufficient statistics for the pattern

recognition task, to the extent that the following assumption holds:

* The feature vector's covariance matrix can be expressed in terms of its eigenvectors and eigenvalues.

The eigenvectors associated with the largest eigenvalues (i.e., X's principal components) contain the

hulk of X's variance, and as a result, the), are assumed to contain the bulk of the information necessary

for separating the class-conditional densities of X in feature vector space X.
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Fukunaga has written extensively on this topic; we refer the reader to [40, ch's. 9-10]. The second

assumption above is one that is frequently violated, as eloquently and succinctly described in [40, pp.

442-443]. In short, under certain circumstances the mzinor components of X (i.e., the eigenvectors associated

with the smallest eigenvalues) will contain the (he bulk of the information necessary for separating the

class-conditional densities of X: principal components analysis would discard these very components.

Under similar circumstances, the information necessary for robust discrimination of X is distributed across

all its elements, so eliminating any of them would result in higher discriminant bias. As a result, we eschew

all but the crudest and most general form of feature vector dimensionality reduction! the linear non-invertible

compression described above. The circumstances under which it is applicablc are obvious (the feature vector

must be retinotopic in nature), so there is little danger of applying the technique when it is inappropriate. The

only danger is using a compression ratio that is so high, information essential to robust discrimination is lost

(see, for example, chapter 9).
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